
Practical Lattice-Based

Cryptography in Hardware

James Victor Howe MSc BSc

Supervisor: Professor Máire O’Neill

School of Electronics, Electrical Engineering, and Computer Science,

Queen’s University Belfast.

This dissertation is submitted for the degree of

Doctor of Philosophy
May 2018

Nomenclature

N Defines the security parameter of a given cryptoscheme.

λ Defines the arithmetic precision of a given cryptoscheme.

µ Defines the message data used with a digital signature scheme.

σ The standard deviation of the discrete Gaussian distribution.

τ The tail-cut parameter of the discrete Gaussian distribution.

AES Advanced encryption standard.

ASIC Application-specific integrated circuit.

AVX Advanced vector extensions.

BDD Bounded distance decoding.

BG The lattice-based digital signature scheme of Bai and Galbraith [2014b].

BKZ The Block Korkine-Zolotarev lattice reduction algorithm.

BLISS The bimodal lattice-based digital signature scheme of Ducas et al. [2013].

CCA Chosen-ciphertext attack.

CPA Chosen-plaintext attack.

CPU Central processing unit.

Nomenclature iii

CVP The closest vector problem.

DCK The decisional compact knapsack problem.

DDoS Distributed denial of service.

DNS Domain name system.

DSA Digital signature algorithm.

DSS Digital signature scheme.

ECC Elliptic-curve cryptography.

ECDSA Elliptic-curve digital signature algorithm.

EU-CMA Existentially unforgeable under a chosen message attack.

FDH Full-domain hash.

FF Flip-flop.

FFT Fast Fourier transform.

FPGA Field-programmable gate array.

GapCVP The approximate decision version of the closest vector problem (CVP).

GapSVP The approximate decision version of the shortest vector problem (SVP).

GGH The Goldreich-Goldwasser-Halevi [Goldreich et al., 1996] lattice-based

cryptosystem.

GLP The Güneysu-Lyubashevsky-Pöppelmann [Güneysu et al., 2012] lattice-

based digital signature scheme.

GPU Graphics processing unit.

Nomenclature iv

GPV The Gentry-Peikert-Vaikuntanathan [Gentry et al., 2008] cryptosystem.

IoT Internet of things.

LBC Lattice-based cryptography.

LUT Lookup table.

LWE The learning with errors problem.

LYU The lattice-based digital signature scheme of Lyubashevsky [2012].

NP Non-deterministic polynomial-time.

NTRU The N th degree truncated polynomial ring lattice-based cryptosystem of

Hoffstein et al. [1998].

NTT Number theoretic transform.

PAR Post-place and route.

PE Processing elements.

PKC Public-key cryptography.

PKE Public-key encryption.

PQC Post-quantum cryptography.

PRNG Pseudo-random number generator.

PSF Preimage sampleable (trapdoor) function.

Ring-LWE The ring variant of the learning with errors (LWE) problem.

Ring-SIS The ring variant of the short integer solution (SIS) problem.

Nomenclature v

Ring-TESLA The lattice-based digital signature scheme of Akleylek et al. [2016].

RSA The Rivest-Shamir-Adleman [Rivest et al., 1978] cryptosystem.

SIMD Single instruction, multiple data.

SIS The short integer solution problem.

SIVP The shortest independent vector problem.

SVP The shortest vector problem.

TESLA The lattice-based digital signature scheme of Alkim et al. [2015].

V2X Vehicle-to-everything.

I would like to dedicate this thesis to my loving parents . . .

Declaration

I hereby declare that, except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole

or in part for consideration for any other degree or qualification in this, or any

other university. This dissertation is my own work and contains nothing which is

the outcome of work done in collaboration with others, except as specified in the

text and Acknowledgements. This dissertation contains fewer than 80,000 words

including appendices, bibliography, footnotes, tables and equations and has fewer

than 150 figures.

James Victor Howe MSc BSc

May 2018

Acknowledgements

And I would like to acknowledge ...

Abstract

Secure communications channels have become essential for the transmission of

sensitive information over the Internet or between embedded devices, requiring

protocols such as public-key encryption and digital signatures. Furthermore, these

requirements for data security and privacy are becoming more important with

growing numbers of connected devices, due to the popularity of the Internet of

Things.

So far, practitioners have relied on cryptography based on the hardness of the

factoring assumption (RSA) or the discrete logarithm problem (DSA/ECDSA).

However, should a quantum computer be realised, the hardness of these related

problems will be seriously weakened. This issue not only affects future commu-

nications but also secure messages sent today, which could be intercepted and

stored, then decrypted by a device built a decade from now. Preparing for this is

therefore paramount, and hence quantum-safe alternatives are needed to provide

long-term security.

This thesis is focused on novel hardware designs of such quantum-safe alterna-

tives, proposing architectures for public-key cryptographic schemes whose security

is based on hardness problems which are to-date no easier to solve with a quantum

computer. More specifically, the hardware designs proposed are for lattice-based

cryptography. From a theoretical point-of-view, lattice-based cryptography has

been well-studied, but research into improving its performance in hardware is

still on-going. The proposed novel hardware designs are for discrete Gaussian

Nomenclature x

sampling techniques, a lattice-based public-key encryption scheme, and digital

signature scheme.

Discrete Gaussian samplers are ubiquitously used within lattice-based cryptog-

raphy. Novel hardware designs are proposed for all the major discrete Gaussian

sampling methods, which are followed by a comprehensive evaluation. The novel

hardware architectures proposed are for the Bernoulli, cumulative distribution ta-

ble (CDT), and Knuth-Yao sampling techniques, which all operate in independent

time. Thus, as well as improving on previous research, the novel designs protect

the samplers against timing side-channel analysis. A discrete Gaussian distribution

testing suite is also proposed to verify the randomness of these samplers.

The proposed hardware design of the lattice-based public-key encryption

scheme is based on a stronger security assumption, the standard lattice assumption,

in comparison to previous research on ideal lattices. The novel architecture utilises

algorithmic and architectural optimisations, designed for the targeted Spartan-6

FPGA platform. When integrated with a constant-time discrete Gaussian sampler,

the entire encryption scheme runs in independent time. Previously, standard

lattices were thought to be completely impractical in hardware, as such the more

practical ideal lattices were viewed as preferable, due to its practicality and smaller

key sizes. The results here show that standard lattices are practical, and could be

considered, especially for applications that require strong security.

The proposed digital signature hardware design is also based on a scheme

proven to be more secure than previous research. Multiple hardware designs are

investigated for different multipliers, which utilise a number of parallel Comba

polynomial multipliers. This was examined since the multiplication stage was

found to be the architecture’s bottleneck. Results are provided for design goals of

low-area, with higher throughput results provided with the inclusion of additional

parallel multipliers.

Nomenclature xi

Overall, the results show that lattice-based cryptography is not only a viable

candidate for quantum-safe cryptography, but also performs well in its own right

when compared to current state-of-the-art classical cryptoschemes.

Table of contents

Nomenclature ii

List of figures xvi

List of tables xix

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Scope . 7

1.3 Novel Contributions . 9

1.4 Organisation of Thesis . 10

2 Background and Theory 13

2.1 Introduction . 14

2.2 Preliminaries . 16

2.2.1 Notation . 16

2.2.2 Discrete Gaussians and Polynomial Rings 17

2.2.3 Encryption Definitions . 17

2.2.4 Digital Signature Definitions 18

2.2.5 Lattice Definitions . 19

2.2.6 Computationally Hard Lattice Problems 20

2.2.7 The Bases of Lattice-Based Cryptography 21

2.3 The Paradigms Of Lattice-Based Cryptosystems 24

Table of contents xiii

2.3.1 GGH and NTRUSign Signatures 25

2.3.2 Hash-and-Sign Signatures 25

2.3.3 Fiat-Shamir Signatures . 27

2.4 Lattice-Based Encryption Schemes 34

2.4.1 Summary and Evaluation of Lattice-Based Encryption Designs 36

2.5 Lattice-Based Digital Signature Schemes 39

2.5.1 On the Instantiation of GPV Hash-and-Sign Signatures . 39

2.5.2 Practical Instantiations of Ideal Lattice-Based Fiat-Shamir

Signatures . 40

2.5.3 Performance Evaluation 47

2.6 Building Blocks . 53

2.6.1 Polynomial Multiplication 53

2.6.2 Discrete Gaussian Sampling 59

2.7 Side-Channel Analysis . 62

2.7.1 Invasive Attacks . 63

2.7.2 Semi-invasive Attacks . 63

2.7.3 Non-Invasive Attacks . 63

2.8 A Discrete Gaussian Testing Suite 64

2.8.1 Introduction to Statistical Testing in Lattice-Based Cryp-

tography . 65

2.8.2 The GLITCH Test Suite 68

2.8.3 Results . 73

2.9 Conclusion . 73

3 Practical Discrete Gaussian Samplers For Lattice-Based Cryp-

tography 77

3.1 Introduction . 78

3.2 Discrete Gaussian & Side Channel Analysis Introduction 80

Table of contents xiv

3.2.1 Sampling Techniques and Previous Work 82

3.2.2 Timing Analysis Of Discrete Gaussian Samplers 93

3.3 Efficient Time-Independent Discrete Gaussian Samplers 95

3.3.1 Time-Independent Bernoulli Sampling 95

3.3.2 Time-Independent Cumulative Distribution Table Sampling 97

3.3.3 Time-Independent Knuth-Yao Sampling 99

3.4 Comparison and Results of Sampling Hardware Architectures . . 101

3.4.1 Bernoulli Results . 102

3.4.2 Knuth-Yao Results . 105

3.4.3 Cumulative Distribution Table Results 106

3.5 Recommendations . 108

3.6 Conclusion . 110

4 Lattice-Based Encryption Over Standard Lattices in Hardware 112

4.1 Introduction . 113

4.2 Learning With Errors . 116

4.2.1 LWE Encryption . 116

4.2.2 The Pros and Cons of Ideal Lattice-based Cryptography . 118

4.3 Standard-LWE Encryption in Hardware 119

4.4 Hardware Optimised Architecture of Standard-LWE Encryption . 120

4.4.1 Sampling the Discrete Gaussian Distribution 121

4.4.2 Encoding/Decoding . 127

4.4.3 Arithmetic . 127

4.5 Results . 129

4.6 Conclusions . 133

5 Ideal Lattice-Based Digital Signatures in Hardware 135

5.1 Introduction . 136

5.2 Ideal Lattice-Based Signatures . 138

Table of contents xv

5.3 Parameter Selection for Ring-TESLA 144

5.4 Design Goals and Multipliers . 146

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying149

5.5.1 Hardware components . 150

5.5.2 Signing and Verifying Hardware Designs 152

5.5.3 Parallelised multipliers for accelerated performance 154

5.6 Results . 156

5.7 Conclusion . 160

6 Conclusion and Future Work 164

6.1 Conclusion Summary . 164

6.1.1 Chapter 3 . 165

6.1.2 Chapter 4 . 166

6.1.3 Chapter 5 . 167

6.2 Topics For Future Research . 168

6.2.1 Side-Channel Analysis of Lattice-Based Cryptosystems . . 168

6.2.2 Alternatives in Lattice-Based Cryptography 169

6.2.3 Theoretical Extensions Within Lattice-Based Cryptography 171

6.2.4 The Quantum Random Oracle Model 171

References 173

Appendix A Example Results from the Discrete Gaussian Test Suite190

Appendix B Author’s Publications 193

List of figures

2.1 The graphs show the improvement bimodal Gaussians have to the

rejection sampling stage. The left (a) showing the LYU [Lyuba-

shevsky, 2012] scheme and the right (b) showing the BLISS [Ducas

et al., 2013] scheme. The distribution of z is shown in blue, fixing

Sc and over the space of all y in (a) and all (b,y) in (b), before the

rejection step and its decomposition as a Cartesian product. The

dashed red curves represent the scaled (1/M) target distribution.

Notice that the likeliness of acceptance is much greater for (b) than

(a). 30

2.2 The graphical outputs of GLITCH tests 10 and 11. 72

3.1 The Knuth-Yao based discrete Gaussian sampler for a toy example:

the probability matrix and the DDG tree (right) with its table

based representation. 90

3.2 High level architecture of the proposed constant-time Bernoulli

sampler with variables and their bit lengths given, which uses a x8

and x32 Trivium as a PRNG. 96

3.3 The CDT discrete Gaussian sampler for σBLISS = 215, using

two BinSearch state machines each accessing the CDF table for

σ′
BLISS = 19.47. 98

3.4 A Knuth-Yao based discrete Gaussian sampler for σLP = 3.33 . . . 100

List of figures xvii

3.5 Graphical performance results of the proposed discrete Gaussian

samplers, on the Spartan-6 LX25-3 FPGA, with and without RAM

use. All results are time-independent unless otherwise stated (Time-

Dep.). 109

4.1 High level architecture of LWE encryption scheme. Lengths are 12

bits unless otherwise stated. 126

5.1 Graphical representation of parameter selection for Ring-TESLA.

Security levels provided are via the outputs of the embedding attack

and the decoding attack. Also added is a reference line for 128-bits,

as well as the hamming weight of the modulus associated with the

standard deviation along the x-axis. 147

5.2 A block diagram of the proposed hardware design for Ring-TESLA

Sign. 149

5.3 A high-level overview of the hardware design of the signing algo-

rithm of Ring-TESLA, showing the main stages of the finite state

machine. 150

5.4 A high-level overview of the hardware design of the verification

algorithm of Ring-TESLA, showing the main stages of the finite

state machine. 150

5.5 A high-level overview of the pipeline incorporated within the sign

(and verify) algorithm of Ring-TESLA. 154

5.6 A block diagram of the proposed hardware design for Ring-TESLA

Verify. Global parameters are stored in BRAM18. 155

5.7 A graphical depiction of the hardware resource consumption of the

proposed Ring-TESLA Sign architecture, provided for all parallel

multiplier options. 161

List of figures xviii

5.8 A graphical depiction of the hardware resource consumption of

the proposed Ring-TESLA Verify architecture, provided for all

parallel multiplier options. 162

List of tables

2.1 Post-place and route results of ring-LWE (RLWE) encryption/decryption;

for balanced designs by Göttert et al. [2012] (GFSBH) and Pöp-

pelmann and Güneysu [2013] (PG13), and for compact/low-area

designs by Roy et al. [2014b] (RVMCV) and Pöppelmann and

Güneysu [2014] (PG14) on FPGA. Results are also provided for

NTRUEncrypt by Kamal and Youssef [2009b] (KaYo), as well as

for elliptic-curve encryption by Güneysu and Paar [2008] (GP) and

Rebeiro et al. [2012] (RRM). 38

2.2 The Parameters of the GLP Signature Scheme by Güneysu et al.

[2012]. 40

2.3 The Parameters of the BLISS Signature Scheme by Ducas et al.

[2013]. 43

2.4 The Parameters of the Ring-TESLA Signature Scheme by Ak-

leylek et al. [2016]. 48

2.5 A summary of ideal and standard lattice-based DSSs and schemes

based on classical assumptions. Results have been benchmarked

on an Intel Core i7 at 3.4 GHz, 32GB RAM with openssl 1.0.1c,

where performance has been scaled to 3.4 GHz based on cycle counts. 51

List of tables xx

2.6 A summary of hardware instantiations of DSSs on Virtex-5 (V5) and

Spartan-6 (S6), comparing those based on lattice problems (GLP

by Güneysu et al. [2012] and BLISS-I by Pöppelmann et al. [2014])

with those of RSA and ECDSA (results taken from Pöppelmann

et al. [2014]). 53

2.7 Post-place and route results of NTT multiplication components used

within lattice-based cryptography, where possible1, for dimension

sizes n = 256 and 512. Results are by Pöppelmann and Güneysu

[2012] (PG) and [Roy et al., 2013a] (RVMCV). The results are

not provided by [Aysu et al., 2013] (APS), but are reported in a

comparative work by Du and Bai [2016] (DB). Results by Du and

Bai [2016] do not provide the modulus used, but it is assumed to

be q = 65537. 56

2.8 Details of the GLITCH software test suite. 68

3.1 Secure 128-bit discrete Gaussian parameters. 83

3.2 Post-place and route results of the Bernoulli sampler for encryption

(σLP = 3.39) and signatures (σBLISS = 215.73), in comparison

to those targeting the same discrete Gaussian parameters with

non-constant operating time. 103

3.3 Post-place and route results of the Knuth-Yao sampler for encryp-

tion (σLP = 3.33), in comparison to existing work with same discrete

Gaussian parameters. 104

3.4 Post-place and route results of the Cumulative Distribution Table

(CDT) sampler for encryption (σLP = 3.33) and signatures (σBLISS =

215), in comparison to existing results with same discrete Gaussian

parameters. 107

List of tables xxi

4.1 A table of the main parameters and key sizes for LP, as proposed

by Lindner and Peikert [2011]. 117

4.2 Post-place and route results of standard-LWE (LWE) and ring-

LWE (RLWE) encryption/decryption, using the main parameter

set (256, 4096, 3.39), except Göttert et al. [2012], Pöppelmann and

Güneysu [2013], Roy et al. [2014b] where q = 4093. 132

5.1 The parameter sets for Ring-TESLA, as proposed by Akleylek

et al. [2016]. 141

5.2 A comparison of the similarities between signature and verification

operations in Ring-TESLA. Polynomial multiplication and the

hash function run on the same number of operations for the same

input sizes, where the LHW multiplier requires three computations

for signing and only two for verification. 143

5.3 The hardware-friendly parameter set derived for Ring-TESLA,

as well as the proposed parameters by Akleylek et al. [2016]. Both

provide 128-bit classical security. 146

5.4 Post-place and route results of the proposed modular multiplication

unit, targeting a Spartan-6 (S6) LX25 FPGA. Parameters used

are (n, q), with two results for the same multiplier with the orig-

inal Ring-TESLA parameters (with q = 51750913) and for the

hardware-friendly set (with q = 16780289). BLISS NTT results

provided for comparison, GLP multiplier results are not available.

Results are also provided from the polynomial multipliers by Pöp-

pelmann and Güneysu [2012] (PG), Aysu et al. [2013] (APS), and

Du and Bai [2016] (DB). Results by Du and Bai [2016] do not

provide the modulus used, but it is assumed to be 65537. Results

with F indicate multipliers that use Fermat primes. 156

List of tables xxii

5.5 Results of the proposed hardware designs for Ring-TESLA with

128-bit parameters proposed by [Akleylek et al., 2016] (Ring-

TESLA-II) and the ones generated in this research (Ring-TESLA-

HW). Also added is a summary of other DSSs, including GLP-I

[Güneysu et al., 2012], BLISS-I [Pöppelmann et al., 2014], RSA,

and ECDSA [Glas et al., 2011] (results taken from [Pöppelmann

et al., 2014]). 158

A.1 Discrete Gaussian sampling test results with target standard devia-

tion σ = 215.727 . . . using the Bernoulli sampling with sample size

236. 191

A.2 Discrete Gaussian sampling test results with target standard de-

viation σ = 215.727 . . ., but generated with standard deviation

σ = 210, using the Bernoulli sampling with sample size 236. 192

CHAPTER 1

Introduction

In this chapter, the fundamental motivation for the research in this thesis is

presented, that is, the emerging threat public-key cryptography (PKC) is facing

with the almost inevitable construction of a quantum computer. Currently used

PKC, such as RSA and elliptic-curve cryptography (ECC) which are deployed

on a large number of diverse devices, are particularly susceptible. The proposed

alternative considered in this thesis is lattice-based cryptography, a branch of

cryptography that is resilient to quantum attacks via a quantum computer, which

offers efficient asymmetric encryption and signature schemes. Additionally, as

shown in this thesis, it is a competitive alternative to current PKC in its own

right.

1.1 Motivation

Modern computing has drastically evolved in recent years due to the increase and

widespread use of the Internet, e-commerce, and cloud services. These systems

are continually evolving due to requirements from specialised platforms, such as

those required by the Internet of things (IoT) or for vehicle-to-everything (V2X)

communications, but also add additional attack vectors for adversaries. This was

1.1 Motivation 2

shown recently by a cyber-attack (more specifically, a distributed denial of service

(DDoS) attack) using compromised IoT devices, which severely disrupted Internet

services by attacking major domain name system (DNS) infrastructures [Woolf,

October 2016]. Security is therefore a growing concern, both for hardware and

software systems.

Additionally, these systems also require long-term security and potentially need

to be protected against attacks for the foreseeable future. Therefore, designing

practical cryptographic schemes for these evolving and specialist platforms is

paramount. With the onset of quantum computers ever looming, the computational

power it could provide would cause instant insecurity to many of today’s universally

used cryptographic schemes by virtue of Shor’s algorithm [Shor, 1997].

Specifically, schemes based on the discrete-logarithm problem or number-

theoretic hard problems, which subsume almost all public-key encryption schemes

used on the Internet, including elliptic-curve cryptography (ECC), RSA and

DSA would be vulnerable. This is due to Shor’s algorithm, which has the ability

to efficiently compute discrete logarithms and factoring. Even symmetric-key

encryption schemes, such as the Advanced Encryption Standard (AES), would

have a quadratic brute-force attack speed-up via Grover’s algorithm [Grover, 1996,

1997], essentially making AES-128 as secure as AES-64.

Accordingly, this has motivated the era of post-quantum cryptography (PQC),

also known as quantum-safe cryptography or quantum-resilient cryptography,

which refers to the construction of cryptographic algorithms to withstand quantum

reductions. PQC is generally split into five types:

• Code-based cryptography [Overbeck and Sendrier, 2009] is based on the

hard problem of decoding a random linear code. That is, the secret code-

generating matrix is hidden with permutating, scrambling, and noise opera-

tions, in which recovery is only possible with the original code-generating

1.1 Motivation 3

matrix. An example of a code-based cryptosystem is the McEliece [McEliece,

1978] cryptosystem.

• Hash-based cryptography is based on the hardness of finding pre-images

of cryptographic hash functions, the classical example being the Merkle

signature scheme [Merkle, 1990]. This type of cryptography currently only

offers digital signature schemes, a more modern example of which is by

Bernstein et al. [2015] and the XMSS signature scheme by Buchmann et al.

[2011].

• Multivariate-quadratic cryptography [Matsumoto and Imai, 1988] is based on

the hard problem of finding the solution for a set of multivariate-quadratic

systems over a finite field. This type of cryptography also currently only

offers digital signature schemes. One of the first signature schemes proposed

of this type was the “Unbalanced Oil and Vinegar” (UOV) signature scheme

by Kipnis et al. [1999]. UOV was later improved upon with the signature

scheme “Rainbow” by Ding and Schmidt [2005].

• Supersingular Isogeny Cryptography [Jao and Feo, 2011] is a more recent post-

quantum candidate, offering key exchange, encryption, and digital signatures.

Its hardness is mainly based on the computation of endomorphism rings of

supersingular curves, which is equivalent to computing isogenies between

supersingular elliptic curves. Its post-quantum security has been recently

studied by De Feo et al. [2014] and Galbraith et al. [2016]. Recently, a

supersingular isogenies Diffie-Hellman key exchange hardware design was

proposed by Koziel et al. [2017].

• Lattice-based cryptography [Ajtai, 1996, Regev, 2005] is based on the hardness

of solving certain lattice problems, thought to be hard for both classical and

quantum computers [Lyubashevsky and Micciancio, 2009]. These lattice

1.1 Motivation 4

problems are essentially finding the shortest or closet vectors in a lattice, a

problem synonymous to the minimum distance problem in coding theory.

The current state-of-the-art is the LPR public-key encryption scheme by

Lyubashevsky et al. [2013a] and the BLISS digital signature scheme by

Ducas et al. [2013].

Amongst these important areas of post-quantum research, lattice-based cryp-

tography is disputably the most auspicious. The main advantage of lattice-based

cryptography over other post-quantum cryptosystems is that it allows for extended

functionality and is, at the same time, efficient for the basic primitives of public-key

encryption and digital signature schemes. Computational problems that exist

within the lattice environment, such as finding the shortest vector (SVP) or finding

the closest vector (CVP), are thought to be resilient to quantum-computer attacks

[Ajtai et al., 2001, Dinur et al., 2003] which imply its conjectured intractability.

Such properties show promise, with regards to security, for replacing current

asymmetric schemes that would be susceptible to attacks in a post-quantum

world.

On the practical front, some constructions of public-key encryption schemes

and digital signature schemes based on lattice problems are now more practical

than traditional schemes based on RSA. One of the most recent hardware designs

of a lattice-based encryption scheme in hardware is shown by Roy et al. [2013a]

(which improves on Göttert et al. [2012], Pöppelmann and Güneysu [2013]) with

results outperforming those of ECC (over curve P224) by 20x [Güneysu and Paar,

2008]. Additionally, the hardware design is also an order of magnitude faster

than a comparable RSA hardware design, provides a higher security level, and

consumes less device resources. With regards to digital signature schemes, the two

most notable hardware architectures by Güneysu et al. [2012] and Pöppelmann

1.1 Motivation 5

et al. [2014] also show a speed improvement of 1.7x and 14x compared to an

equivalent RSA design [Suzuki and Matsumoto, 2011].

The first use of lattices as a cryptographic primitive is due to Ajtai [1996], who

proposed a problem now known as the short integer solution (SIS) problem. The

concept remained purely academic, due to its limited capabilities and inefficiencies,

until recently; lattice-based cryptography has now become available as a future

alternative to number-theoretic cryptography. Recent research allows virtually

any cryptographic primitive, such as those already discussed, to be built on the

hardness of lattice problems.

Also, there has been a transition into a particular class of lattices, predom-

inantly ideal lattices, as a source of computational hardness. Although the

robustness of hardness assumptions on ideal lattices, in comparison to general

lattices, has not been explicitly proven, it is generally considered that most

problems relevant for cryptography still remain hard [Langlois and Stehlé, 2014,

Lyubashevsky et al., 2010]. Additionally, using ideal lattices offers a significant

speed-up and reduction in key sizes for almost all cryptographic primitives, in

particular, in encryption schemes and digital signatures.

However, it will be some time before lattice-based cryptoschemes begin to

replace current public-key cryptography and their integration into practical appli-

cations needs to be explored. For example, ECC was proposed by Miller [1986]

and Koblitz [1987] but it took 20 years until it appeared in actual security systems.

And while cryptanalysis is still an ongoing effort, the most critical issue to date

with lattice-based cryptography is its practicability, and it is clear that in order

for it to replace widely used number-theoretic primitives, its constructions must

be shown to be similarly efficient on many of the embedded platforms prevalent

in today’s digital and pervasive environment.

This motivates the theme of this thesis; evaluating lattice-based cryptography

as an alternative to currently used quantum susceptible cryptography such as

1.1 Motivation 6

RSA and ECC. In particular, a random number generator required with lattice-

based cryptography, a lattice-based encryption scheme, and a lattice-based digital

signature scheme have been focused on. The focus of this research has been to

design hardware optimised architectures for these lattice-based algorithms.

Recently, there has been a major shift towards field-programmable gate array

(FPGA) use in cloud services, since FPGAs are able to contribute significant

amounts of computing power at a lower cost in comparison to central processing

units (CPUs). This can be seen in Amazon [Freund, December 2016] and Mi-

crosoft’s [Metz, December 2016] inclusion of FPGAs in their data centres, where

“the hardware costs less than 30 percent of everything else in the [Microsoft’s]

server, consumes less than 10 percent of the power, and processes data twice as

fast as the company could without it.” These savings in hardware and energy

costs provided by FPGAs are also echoed by Intel’s $16.7 billion acquisition of

Altera [Darrow, February 2016].

Additionally, FPGAs are also being used for encryption and compression [Metz,

December 2016]. This is furthered by an in-depth article in Forbes Insights by

Intel [Intel, January 2017], which states that:

“Security is another essential element for autonomous vehicles and,

in many cases, for much of IoT. In the near future, autonomous cars

may be connected to the Internet, sharing relevant data over the cloud,

and, possibly, from car to car. The vehicle must be able to apply

security algorithms to ensure that the data received is coming from

a trusted source. The digital algorithms used for sending data, and

for validating and decrypting incoming data, will be complex, and

constantly changing. Like dealing with unexpected situations, handling

the security screening will require substantial computing capabilities

and FPGAs are ideally suited to performing these tasks. They operate

1.2 Aims and Scope 7

quickly and can be reconfigured when necessary to upgrade security

settings.”

Indeed, the FPGA platform is very suitable for cryptography and the prototyp-

ing of cryptographic designs. This is due to the device’s flexible re-programmability,

and features such as digital signal processor (DSP) blocks. The FPGA devices

considered in this thesis are generally low-cost, with hardware designs usually

targeting the Xilinx Spartan-6 family of devices [Xilinx, 2011]. However, the

proposed designs are not restricted to this family of FPGAs and can be adapted

to other platforms.

FPGAs are also highly suitable for cryptographic designs since they allow for

the parallelising of operations. Software based designs do not have this quality and

therefore are restricted to sequential and consecutive designs. Additionally, CPUs

have a fixed hardware structure, with constant memory structure and connections.

FPGAs have fixed resources (such as slices), but the functions they perform and

the interconnections between them are defined by the user.

The nature of FPGAs also means designs can be fairly compared, for any

hardware design targeting the same device. Cryptography, especially lattice-based

cryptography, is a very fast paced research area, with parameter and algorithmic

changes common, thus FPGAs being reprogrammable is ideal.

1.2 Aims and Scope

The central aim of this thesis is to improve the efficiency, and therefore practicality,

of lattice-based schemes through the use of optimised hardware architectures

targeting FPGA platforms. It is also possible to port these hardware designs to

application-specific integrated circuit (ASIC) devices [Oder et al., 2016].

The proposed novel architectures exploit the aforementioned qualities of the

FPGA, gaining efficiencies by considering novel architectural and algorithmic

1.2 Aims and Scope 8

optimisations in comparison to existing research. More specifically, novel hardware

designs are proposed for discrete Gaussian samplers, a lattice-based encryption

scheme, and a lattice-based digital signature scheme, producing results that out-

perform previous research in terms of FPGA area consumption and speed. Where

possible, the proposed hardware designs are also compared to their equivalences

in software.

The discrete Gaussian sampler component is one of the main modules within

all of lattice-based cryptography and can be seen as analogous to pseudo-random

number generators (PRNGs), which are required for most cryptographic schemes.

This “normalised noise” is added onto computations of secret-data to “hide” its

values. There are a number of techniques for deriving discrete Gaussian samples,

such as basic rejection sampling or by using sampling methods designed for this

purpose. These specialised techniques are the Bernoulli sampler [Ducas et al.,

2013], the cumulative distribution table (CDT) sampler [Peikert, 2010], the Knuth-

Yao sampler [Knuth and Yao, 1976], and the discrete Ziggurat sampler [Marsaglia

et al., 2000, Buchmann et al., 2013], which either generate samples via arithmetic

or are table based.

A hardware design of the lattice-based public-key encryption scheme by Lindner

and Peikert [2011] is investigated due to a number of security concerns within

ideal lattice-based cryptography. The use of standard lattices by Lindner and

Peikert [2011] appeases these security concerns and also provides stronger security

in comparison to the state-of-the-art in ideal lattice-based encryption.

The lattice-based digital signature scheme by Akleylek et al. [2016] is also

considered due to its higher security assumption, that is, a provably secure

instantiation with worst-case to average-case hardness. These are qualities not

provided by the state-of-the-art in lattice-based digital signature schemes.

1.3 Novel Contributions 9

1.3 Novel Contributions

The following novel contributions are presented in this thesis:

1. The first comprehensive analysis of the discrete Gaussian sampling com-

ponent in hardware is undertaken [Howe et al., 2016a], with the following

novel contributions:

(a) Practical hardware designs of discrete Gaussian samplers are presented,

and compared with current state-of-the-art architectures, for appro-

priate practical parameters, throughput, memory consumption, and

resource count. The hardware designs follow novel optimisation strate-

gies, with the results competing with, and in many cases, significantly

outperforming, previous research.

(b) Novel designs of the first independent-time discrete Gaussian samplers

in hardware are proposed which provide resistance against timing

analysis attacks.

(c) Based on the performance results, concrete recommendations are given

for the most appropriate sampler to use in particular applications.

(d) A test suite is proposed for use with the discrete Gaussian component,

which tests the correctness of any generic sampler output.

2. The first hardware design of a standard lattice-based cryptoscheme is pre-

sented:

(a) The hardware architecture is based upon a standard-LWE public-

key encryption scheme, on a Spartan-6 FPGA, and is designed to

balance area and performance. Results are provided for encryption

and decryption algorithms, showing for the first time that standard

lattice-based cryptography is indeed practical.

1.4 Organisation of Thesis 10

(b) With the inclusion of a time-independent discrete Gaussian sampler, the

entire encryption scheme also operates in independent time, therefore

bypassing timing side-channel analysis.

3. The first hardware design of a provably secure lattice-based digital signature

scheme is presented:

(a) Separate signing and verifying hardware designs are proposed, with the

design goal of low-area, provided with a variety of options for higher

throughput, which can produce between 104-785 signatures and 102-776

verifications per second.

(b) The first evaluation, in hardware, of a lattice-based digital signature

scheme which uses an alternative multiplication method to the number

theoretic transform (NTT), that is, schoolbook polynomial multiplica-

tion. The modular multiplication and low-Hamming weight components

are completely adaptable to any parameter set, which is not the case if

NTTs are used.

(c) The research also investigates parameter selection for the signature

scheme. As such, hardware-friendly parameters are proposed, which are

shown to reduce the area consumption in comparison to the parameter

set proposed by the authors.

1.4 Organisation of Thesis

The thesis is organised as follows:

In Chapter 2, the field of lattice-based cryptography is comprehensively in-

troduced, and a detailed background is given. Related previous research is also

discussed, in particular theoretical contributions as well as software and hardware

research with regards to discrete Gaussian samplers, lattice-based encryption,

1.4 Organisation of Thesis 11

and lattice-based digital signature schemes. The chapter then presents a discrete

Gaussian testing suite, a generic software-based statistical testing platform for the

discrete Gaussian distribution. The purpose of this testing suite is to verify that

hardware or software based discrete Gaussian samplers are actually outputting

the correct distribution, which could otherwise lead to security issues within a

lattice-based cryptoscheme.

In Chapter 3, novel hardware designs of efficient and time-independent discrete

Gaussian samplers are proposed. Hardware designs are proposed for all the

majorly used practical techniques for generating discrete Gaussian noise, with

separate designs for encryption and signature applications, using and not using

the on-chip memory on FPGA devices (BRAMs). The theoretical background and

previous research is comprehensive, with conclusions and results provided with

application-specific recommendations. All hardware designs and recommendations

are evaluated on FPGA for demonstration of practicability.

In Chapter 4, the first hardware design of a standard lattice-based cryptoscheme

is proposed. The novel encryption hardware designs significantly exceed expecta-

tions (standard schemes were previously considered infeasible and impractical in

hardware) and even closely compete with ideal lattice-based encryption schemes.

This research uses a discrete Gaussian sampler from Chapter 3 to produce an

encryption scheme which runs completely in constant-time, offering resistance to

timing side-channel analysis.

In Chapter 5, the first hardware design of a compact lattice-based digital

signature scheme is proposed, which additionally is the first lattice-based hardware

design with a provably secure instantiation. This chapter also considers the

performance of a lattice-based signature scheme which does not employ the

restrictive NTT polynomial multiplier. A generic schoolbook multiplier is proposed

with Barrett modular reduction, and a variety of results are produced, optimised

to trade-off between efficiency and compactness. The hardware designs also

1.4 Organisation of Thesis 12

incorporate a low-Hamming weight multiplier and the SHA3 post-quantum secure

hash function, both of which are designed to operate outside the Sign and Verify

critical path, and operate in parallel to the subsequent Sign/Verify operation.

Finally, the thesis is concluded in Chapter 6, which concludes each of the

chapters of the thesis. Furthermore, a discussion on future areas of research is

also given.

CHAPTER 2

Background and Theory

In this chapter, the fundamental mathematics, mathematical notations, and

computationally hard problems of lattice-based cryptography (LBC) are defined.

Within the mathematics of LBC, the computational hardness problems they are

built on are discussed, as well as the hardness problems themselves. Additionally,

the important lattice-based cryptoschemes such as key exchange, encryption, and

signature schemes are introduced and discussed. Any security levels discussed

in this chapter (and throughout this thesis) is classical security, that is security

against a classical adversary, as opposed to post-quantum security from a quantum

adversary. As well as the schemes themselves, the underlying modules they share,

such as polynomial multipliers and discrete Gaussian samplers, are defined, with

previous and related research also given. The necessary mathematical definitions

used within these modules are also outlined, such as schoolbook multiplication

(as used in Chapter 5) and the use of Gaussian convolutions (as used in Chapter

3). Significant portions of this chapter appear in the already published work by

Howe et al. [2015].

Side-channel analysis is introduced in Section 2.7 as this is furthered in Chapter

3 for discrete Gaussian hardware designs. Another contribution of this chapter

is the proposal of a test suite for discrete Gaussian samplers. Statistical test

2.1 Introduction 14

suites are common for use in pseudo-random number generators (PRNGs), and

as LBC becomes more prevalent, it is important to develop a method to test

the correctness of discrete Gaussian samplers. Moreover, due to the theoretical

requirements for discrete Gaussian samplers within LBC, certain statistical tests

for distribution correctness become inappropriate, and therefore a number of tests

are surveyed. The final test suite provides eleven tests which assess the exactness

of a discrete Gaussian sampler, which can be used on any sampling technique.

This research appears in the publication by Howe and O’Neill [2017].

2.1 Introduction

Post-quantum cryptography as a research field has grown substantially recently,

essentially due to the growing concerns posed by quantum computers. The

proviso being to provide long-term and highly secure cryptography, practical in

comparison to RSA and elliptic-curve cryptography (ECC), but more importantly

being adequately safe from quantum computers. This requirement is also hastened

by the need for “future proofing” currently secure data, ensuring current IT

infrastructures are quantum-safe before large-scale quantum computers are realised

[Campagna et al., 2015].

As such, government agencies, companies, and standards agencies are plan-

ning transitions towards quantum-safe algorithms. The Committee on National

Security Systems (CNSS) [CNSS, 2015] and the National Technical Authority for

Information Assurance (CESG/NCSC) [CESG, 2016] are now planning drop-in

quantum-safe replacements for current cryptosystems. The ETSI Quantum-Safe

Cryptography (QSC) Industry Specification Group (ISG) [Campagna et al., 2015]

is also highly active in researching industrial requirements for quantum-safe real-

world deployments. NIST [NIST, 2016] have also called for quantum-resistant

2.1 Introduction 15

cryptographic algorithms for new public-key cryptography standards, similar to

previous AES and SHA-3 competitions.

Lattice-based cryptography [Ajtai, 1996, Regev, 2005] (LBC) is one of the

most promising areas within post-quantum cryptography, and offers versatile,

efficient, and high performance security services. LBC bases its hardness on

finding the shortest (or closest) vector in a lattice, which is currently resilient

to all known quantum reductions and hence attacks by a quantum computer.

Furthermore, lattice-based cryptography also offers extended functionality whilst

being more efficient than ECC and RSA based primitives of public-key encryption

[Pöppelmann and Güneysu, 2014] and digital signature schemes [Howe et al.,

2015].

Cryptography based on the hardness of lattice problems has gained a lot

of attention from a theoretical point of view, but to date this can not be said

for research into its practical performance. The main focus of this thesis is to

extend the practical investigation of lattice-based cryptography (LBC), and to

bring the field closer to becoming feasible for real-world instantiations. This is

achieved by outperforming previous work, with regards to RSA, ECC, and other

lattice-based designs, in terms of speed and/or area consumption and proposing

countermeasures against certain types of attack vectors (mainly timing analysis).

This chapter covers the relevant background on the theory of lattices and the

cryptography based upon its hardness. In practice, the cryptoschemes do not

operate with lattices directly but the computational learning problems they are

based on are shown to be as hard as solving hard lattice problems, which will be

explained more explicitly in this chapter.

The following sections focus on the preliminaries of LBC. The prevailing

notation used throughout this thesis is presented in Section 2.2.1 and 2.2.2. The

high-level theoretical encryption and digital signature scheme model is revisited

in Sections 2.2.3 and 2.2.4, as these concepts will be used in Chapter 4 and 5,

2.2 Preliminaries 16

respectively. Furthering this, the theory of lattices is discussed in Section 2.2.5 as

well as the main worst-case hardness problems within lattice theory in Section

2.2.6. The hardness problems which are used within LBC are detailed in Section

2.2.7. Lattice-based cryptoschemes are then described, which begins with an

introduction to types of cryptoschemes in Section 2.3, encryption algorithms in

Section 2.4, DSS algorithms in Section 2.5, and the core components within these

cryptoschemes in Section 2.6. Side-channel analysis is then introduced in Section

2.7 which is followed by the proposal for the discrete Gaussian testing suite in

Section 2.8.

The chapter is then concluded in Section 2.9.

2.2 Preliminaries

2.2.1 Notation

Throughout this thesis, the following notation will be used. All vectors are column

vectors, which are expressed with bold-face lower case letters, and matrices are

represented by collections of column vectors, such as M = (v1,v2, . . . ,vn), and

are expressed with bold-face upper case letters. All logarithms used are to the

base 2, so log2(·) = log(·). The ℓp-norm of a vector v is denoted as ∥v∥p, where

for the Euclidean length (p = 2) it is simplified to ∥v∥. An element x ∈ Zq is

exactly the element x ∈ Z reduced modulo q, represented in the range [− q−1
2 , q−1

2].

Therefore, the operation y = Ax, where A ∈ Zn×m
q and x ∈ Zm, results in the

element y ∈ Zn
q . For an element s chosen uniformly at random from the set S,

the notation s
$← S is used.

2.2 Preliminaries 17

2.2.2 Discrete Gaussians and Polynomial Rings

The Gaussian distribution, with standard deviation σ ∈ R, centre c ∈ Rn, and

evaluated at x ∈ Rn is defined by a weight proportional to ρc,σ(x) = exp(−∥x−c∥2

2σ2).

When the centre c = 0 the notation is simply ρσ(x). The centred discrete Gaussian

distribution over Zm is defined as Dm
σ = ρσ(x)/ρσ(Z)m. The polynomial ring

R = Zq[x]/⟨xn + 1⟩ is defined such that all elements can be represented by

polynomials of degree n− 1, with coefficients in the range [− q−1
2 , q−1

2], with the

subset Rk consisting of all polynomials with coefficients in the range [−k, k]. The

set of the units of R is denoted as R×.

2.2.3 Encryption Definitions

Formally, a public-key encryption (PKE) scheme is a tuple of probabilistic polyno-

mial time algorithms, (KeyGen(1n), Encpk , Decsk), which define the scheme’s key

generation, encryption, and decryption operations, respectively. KeyGen(1n) takes

the security parameter 1n as input and outputs a key pair (pk, sk), where pk is the

scheme’s public-key used for encryption and sk is the scheme’s secret-key used for

decryption. The PKE operation Encpk(m) takes the message data m ∈M, over

the message spaceM, and public-key pk, and outputs a ciphertext c. The Decryp-

tion operation Decsk(c) takes the encrypted ciphertext data c and secret-key sk,

and outputs the message m. A PKE scheme is δ(n)-correct if and only if, for all suf-

ficiently large security parameters N and for any m ∈M, Pr[Decsk(Encpk(m)) =

m] ≥ δ(n) for (pk, sk) ← KeyGen(1n), where the probability is taken over the

randomness of the algorithms (KeyGen(1n), Encpk , and Decsk).

A PKE scheme is considered secure if it is shown to be unforgeable against a

chosen plaintext attack (CPA). This is a model of security where an adversary

should not be able to distinguish between two ciphertext outputs, given access

to the public-key and the encryption oracle, of chosen message inputs. A model

2.2 Preliminaries 18

with a higher level of security is the chosen ciphertext attack (CCA) model, in

which an adversary can gain access to plaintext information from ciphertexts of

their choice, that is the decryption oracle. A PKE is therefore CCA-secure if

an adversary cannot gain any secret information given access to this decryption

oracle. The PKE scheme by Lindner and Peikert [2011] is used for the hardware

design in Chapter 4, which is CPA secure [Bansarkhani and Buchmann, 2015].

2.2.4 Digital Signature Definitions

Formally, a digital signature scheme (DSS) is a tuple of probabilistic polynomial

time algorithms, (KeyGen(1n), Signsk , Verpk), which define the scheme’s key

generation, signing, and verification operations, respectively. KeyGen(1n) outputs

the secret-key sk and public-key pk, Signsk(µ) takes as input a message µ ∈ M

and outputs a corresponding signature σ using sk, and Verifypk(µ, σ) takes as

input the message µ and signature σ, and outputs 1 if and only if (µ, σ) is a valid

message/signature pair, otherwise outputs 0. A signature scheme is complete if

∀sk, pk ← KeyGen, ∀µ ∈M and any σ ← Signsk , it produces Verifypk(µ, σ) = 1.

For a DSS to be secure, it must be proven to be existentially unforgeable under

a chosen message attack (EU-CMA) [Goldwasser et al., 1988]. Which means

that an adversary wins if, given access to the verification key and signing oracle

OSign (that is, pairs (µ1, σ1), (µ2, σ2), . . . , (µq, σq)) they are able to generate (in

polynomial time) a valid signature of µ, according to Verifypk(µ, σ), given that µ

was not amongst those messages µi queried to OSign. Additionally, for a DSS in

the random oracle model, where collision resistant hash functions are used, an

adversary also has access to a hash oracle OH .

A higher level of security is strong unforgeability; whereby given the same

paradigm, an adversary wins if they are able to generate (in polynomial time) a

valid signature of µ according to Verifypk(µ, σ) given that (µ, σ) was not amongst

2.2 Preliminaries 19

those (µi, σi) queried to OSign. A DSS is described as (qSign, qH , t, ϵ)-strongly

unforgeable if, given at most qSign queries to the signing oracle, at most qH queries

to the hash oracle and running in time at most t; there is no adversary that

succeeds with at least probability ϵ. The digital signature scheme by Akleylek

et al. [2016], used for the hardware design in Chapter 5 is EU-CMA secure.

2.2.5 Lattice Definitions

The general definition of a lattice is a set of points in n-dimensional space with

periodic structure. More formally, a lattice L is defined as

L = {x1b1 + x2b2 + · · ·+ xnbn | xi ∈ Z},

given n-linearly independent vectors b1, b2, . . . , bn ∈ Rm known as basis vectors.

Alternatively, a lattice can be defined as a discrete co-compact subgroup of Rm.

The rank of a lattice is n and the dimension m. A lattice is known as full-rank

when n = m.

The fundamental region of a lattice is a convex region, known as a lattice’s

parallelepiped, that contains exactly one representative of each co-set (for a proof

see Minkowski’s theorem [Helfrich, 1985]). The exact area of the fundamental

region is the area that is spanned by the basis vectors. Fundamental regions

are disjoint and collectively span the entire lattice. The determinant of a lattice

defines the density of the lattice points. Given a basis matrix B, the determinant

of a lattice is defined as det(L) = |det(B)|.

A number of different bases will generate the same lattice which motivates

equivalence. Two bases will generate the same lattice when any of the following

occur: vectors of the basis matrix are permuted, vectors of the basis matrix

are negated, or vectors are added to integer multiples of other vectors, or more

concisely: the multiplication of the basis matrix B by any unimodular matrix U .

2.2 Preliminaries 20

This leads to the observation that, given a unimodular matrix U , two bases B1

and B2 are equivalent if and only if B2 = B1U .

The minimum distance of a lattice L, also referred to as the shortest (nonzero)

vector, is defined as λ1(L) = min{∥v∥ : v ∈ L\{0}}. This is then generalised to

define the kth successive minima as:

λk(L) = min{r : dim(span(L ∩ B(r))) ≥ k},

such that the ball B(0, r) = {v : ∥v∥ ≤ r}, of radius r and centre 0, contains at

least k linearly independent vectors.

2.2.6 Computationally Hard Lattice Problems

Certain classes of optimisation problems for lattices, such as the shortest vector

problem (SVP) and its inhomogeneous counterpart the closest vector problem

(CVP), are analogous to problems in coding theory. The security of lattice-

based cryptography is based on the conjectured intractability of SVP, a problem

synonymous to the minimum distance problem in coding theory. There are many

variations of SVP and the two most commonly considered in the literature are

presented here. The first, SVPγ, states that given a lattice basis B, find a non-

zero vector v ∈ L(B) such that ∥v∥ ≤ γλ1(L(B)). The second, GapSVPγ, an

approximate decision version, states that given a lattice basis B and integer d,

output 1 if λ1(L(B)) ≤ d or 0 if λ1(L(B)) > γd. Clearly, both problems are

more difficult when γ is small, conversely becoming less difficult as γ increases.

Lyubashevsky and Micciancio [2009] investigated the NP-hardness of SVP (as well

as the bounded distance decoding (BDD) problem) and its variants for different

γ constraints. They also provide proofs of the equivalence of the computational

problems within certain approximation factors.

2.2 Preliminaries 21

Analogous to the nearest codeword problem in coding theory, the task given by

CVP is to find the closest lattice point (likewise, codeword) given a (target) vector

t ∈ Rm. More formally, CVPγ states that, given a lattice L and a vector t ∈ Rm,

find a lattice point v ∈ L such that ∥v − t∥ ≤ γd(t,L), where d(t,L) denotes

the minimum distance between an arbitrary point in a vector space and a lattice

point. The approximate decision version GapCVPγ states that, given a lattice

basis B, a vector t ∈ Rm and d ∈ R, output 1 if d(t,L) ≤ d or 0 if d(t,L) > γd.

Equivalences have been shown (most thoroughly by Micciancio [2008]) between

CVP and the shortest independent vector problem (SIVP) in their exact versions,

under deterministic polynomial time rank-preserving reductions.

2.2.7 The Bases of Lattice-Based Cryptography

Concordantly, there are problems based on the worst-case hardness of lattices

which form the foundation of cryptosystems. They are namely the learning with

errors problem (LWE) and the short integer solution problem (SIS) and, as shown

by Micciancio and Peikert [2013], both assert the exceptional property that they are

as hard to solve in the average-case as they are in the worst-case of lattice problems

(such as SVP or CVP). This worst-case hardness quality renders all cryptographic

constructions based on it secure, under the assumption that worst-case lattice

problems are hard. In other words, breaking the cryptographic construction

implies an efficient algorithm for solving any instance of some underlying lattice

problem, such as SVP or CVP.

The SIS problem was first proposed by Ajtai [1996] as an alternative to

cryptosystems, such as RSA, based on the hardness of factorising large numbers.

The problem is defined as follows: given random vectors a1,a2, . . . ,am ∈ Zn
q , and

integers n and q, find a short non-trivial solution s1, s2, . . . , sm ∈ Zm such that;

2.2 Preliminaries 22

s1a1 + s2a2 + · · ·+ smam ≡ 0 mod q,

(alternatively As ≡ 0 mod q). Restricting the shortness of the solution, such

that 0 ≤ ∥s∥ ≤ β < q, alters the problem from trivial to computationally hard.

Additionally, β must also be large enough to ensure a solution exists. Setting
√
n log q < β < q satisfies this with Micciancio and Peikert [2013] showing β

‘nearly’ equal to q retains the hardness assumption.

The relationship this problem has to lattices is as follows. Let S be the set of

all integer solutions s = (s1, s2, . . . , sm), then S is a lattice implying the solution

to the SIS problem is simply to find a short vector in S. Common uses of the

SIS problem are shown by Micciancio and Peikert [2013] and include one-way

functions and collision-resistant hash functions, while Lyubashevsky [2009, 2012]

shows its use in DSSs which are discussed in Section 2.3.

The LWE problem, first proposed by Regev [2005], has many applications

but can be predominantly attributed to uses in public-key cryptography (PKC)

and CCA-secure cryptosystems. The LWE definition is as follows: given some

uniformly distributed ai ∈ Zn
q , integers n and q, and bi ≡ ⟨ai, s⟩+ ei mod q, where

the secret-key s is chosen uniformly at random from Zn
q and each ei follows some

small error distribution, find s given access to pairs (ai, bi). The problem naturally

produces two forms, namely its search and decision variants. The search variant

asks an adversary to find s ∈ Zn
q given A ∈ Zn×m

q and b ≡ AT s + e mod q,

whereas the decision variant asks an adversary to distinguish between (ai, bi) and

(ai, ui) where ui is chosen uniformly at random. Regev [2009] (with a sample

preserving reduction shown by Micciancio and Mol [2011]) shows a search-to-

decision reduction, meaning that any efficient distinguisher between LWE and

uniform distributions can be used to recover the secret-key. It should be noted that

the small error distribution has been widely studied [Dwarakanath and Galbraith,

2.2 Preliminaries 23

2014, Micciancio and Peikert, 2013] and is chosen independently and identically

from a Gaussian-like distribution. Taking the standard deviation σ = αq, a

quantum reduction was shown by Regev [2005], whereby LWE is as hard in

the average-case as approximating lattice problems in the worst-case with an

approximation factor Õ(n/α) and αq ≥ 2
√
n. Classical reductions were shown

by Peikert [2008] with an exponential modulus and by Brakerski et al. [2013]

with a polynomial modulus; the latter introducing an efficient algorithm showing

hardness of LWE for worst-case instances of standard lattice problems. The use

of standard lattices is furthered in Chapter 4. Moreover, Brakerski et al. [2013]

discuss the hardness of the respective ring variants, showing a hardness proof for

ring-LWE and Ring-SIS with exponential modulus under the hardness of problems

on general lattices.

The relationship LWE has with known hard problems of lattices is as follows.

Consider the lattice L(A) = {y ∈ Zm | y ≡ As mod q} for some s ∈ Zn
q ; in the

instances where each ei are small, the LWE problem is asking an adversary to

solve the CVP on the lattice L(A). Inherently, the value of s is not uniquely

determined but one value is significantly more likely than the rest, thus LWE is a

well-defined maximum likelihood problem. This abstraction can be extended to

the decision variant of LWE: consider again L(A) and b = As + e mod q, since

b is significantly more likely to be decoded as a lattice point than some point

v ∈ Zm
q chosen uniformly at random. The decision-LWE problem can also be

made equivalent to a decision bounded distance decoding (BDD) problem, where

the bound is the radius of e.

Problems such as LWE and SIS are theoretically sound but lack efficiency in

practice due to the need for large unstructured matrices. To alleviate this, the

problems have been considered over some polynomial ring, which yields their sister-

problems ring-LWE and ring-SIS. Adopting the problems within the ring setting

produces a special class of lattices, these being ideal lattices, which Micciancio

2.3 The Paradigms Of Lattice-Based Cryptosystems 24

[2007] shows ameliorates the impracticality of general lattices. Ideal lattices are

generally considered in the quotient ring Z[x]/f , for some monic polynomial f

of degree n, where n is a power of 2, implying irreducibility over Z. Common

examples of such a function f are f = xn + 1 or f = xq−1 + xq−2 + · · · + 1 for

some prime q.

Ring-SISq,n,m,β is the ring variant of SIS and is defined as, given random vectors

a1,a2, . . . , am ∈ R, find a short non-trivial vector s ∈ R such that ∥s∥∞ ≤ β and

As ≡ 0 mod q.

Ring-LWEq,n,m,β is defined as, given a prime modulus q ≡ 1 mod 2n, random

vectors s,a1,a2, . . . ,am,b1,b2, . . . ,bm ∈ R, where bi = ais + ei mod q (again ei

following some small error distribution) find s given access to pairs (ai,bi).

The decision variant requires to distinguish between pairs (ai,bi) and (ai,ui)

where ui is chosen uniformly at random. Additionally, as shown by Lyubashevsky

et al. [2013b], sampling s from the error distribution (instead of the uniform

distribution) is shown to maintain the hardness assumption of the original ring-

LWE, which allows the secret s to be short.

The reason ideal lattices are preferred is because of their simplified representa-

tion and subsequent smaller key-size [Micciancio, 2007] as well as the applicability

of number theoretic transforms (NTTs), which improve operational run-times

from operating in quadratic to quasi-linear complexity.

2.3 The Paradigms Of Lattice-Based Cryptosys-

tems

The following section introduces LBC. The definitions and previous research of

encryption schemes and digital signature schemes are presented. The section

begins with an analysis of the different paradigms of these different cryptosystems

2.3 The Paradigms Of Lattice-Based Cryptosystems 25

(important for DSSs1) which then motivates the research for the remaining chapters

in this thesis. The cryptoschemes based on those paradigms are then presented,

with previous research also discussed. DSSs based on the hardness of lattice

problems generally fall into three categories, namely GGH/NTRUSign signatures,

hash-and-sign signatures, and Fiat-Shamir signatures.

2.3.1 GGH and NTRUSign Signatures

The GGH cryptoscheme by Goldreich et al. [1996] and the NTRUEncrypt cryp-

toscheme by Hoffstein et al. [1998] were among the first shown to be based on

the hardness of lattice problems, specifically based on solving the approximate

closest vector problem. The difference between these schemes is that the latter can

somewhat be seen as a special instantiation of the former. The GGH cryptosystem

included a DSS, in turn forming the basis of NTRUSign by Hoffstein et al. [2003]

which combined almost the entire design of GGH but uses the NTRU lattices

employed in NTRUEncrypt. The predecessor to NTRUSign, NSS [Hoffstein et al.,

2001a], was broken by Gentry et al. [2001; 2002] and incidently NTRUSign suffered

the same fate with works by Nguyen and Regev [2009], which show experimental

results recovering the secret-key with 400 signatures. Since Nguyen and Regev cat-

egorically show (without perturbation) NTRUSign to be absolutely insecure and

Ducas and Nguyen [2012b] even broke further countermeasures and a version with

perturbations, the descriptions will not be covered, and also since implementation

results currently do not have practical applications.

2.3.2 Hash-and-Sign Signatures

DSSs based on the hash-and-sign paradigm follow seminal work by Diffie and

Hellman [1976]. The concept follows the criterion that a message should be
1Lattice-based encryption schemes follow a singular, standard paradigm and therefore their

description begins in Section 2.4.

2.3 The Paradigms Of Lattice-Based Cryptosystems 26

hashed before being signed. That is, to sign a message, first hash µ to some

point h = H(µ), which must be in the range of the trapdoor function f , the

then acclaimed RSA being such a function. Once the message has been hashed,

it is signed σ = f−1(h) and a verification algorithm checks that f(σ) = H(µ)

to confirm whether (µ, σ) is a valid message/signature pair. This theory, by

Bellare and Rogaway [1993], became the foundation for full-domain hash (FDH),

with the hash function H(·) being modelled on a random oracle. Where f is a

trapdoor permutation, the scheme is shown to be existentially unforgeable under

a chosen-message attack.

The relation lattices have to hash-and-sign signatures is the intuition that a

short basis for a lattice could provide such a trapdoor function. This led to the first

proposal by Gentry et al. [2008] (GPV), showing a DSS based on the hardness of

lattice problems. The idea was to use a preimage sampleable (trapdoor) function

(PSF) that somewhat behaves like trapdoor permutations. The collision resistance

of the trapdoor function proposed is the basis of security for the scheme, which

consequently is shown to be as hard as SIVP or GapSVP.

As described in GPV and at a high-level, the public function fB (B being the

public basis for some lattice L) being evaluated by some random input corresponds

to choosing a random lattice point v ∈ L and adding some “noise” via some

relatively short error term e, giving a point y = v + e. Inverting y corresponds to

decoding it to any sufficiently close lattice point v′ ∈ L, though not necessarily v

itself, whereby the noise term is large enough that many preimages exist. Given

the trapdoor basis, it is easy to decode y using the sampling algorithm. However,

with only access to the public basis matrix, it is on average a hard problem. Thus

central to the scheme is the construction of trapdoor functions, with the necessary

property that every output value has several preimages.

Using this approach, the scheme then similarly follows the generic DSS con-

struction already seen. KeyGen outputs a personal uniformly random public-key

2.3 The Paradigms Of Lattice-Based Cryptosystems 27

matrix A ∈ Zn×m
q and an associated secret-key (trapdoor) matrix (with small

coefficients) S ∈ Zm×m such that AS ≡ 0 mod q. Moreover, it also chooses a FDH

H(·) : {0, 1}∗ → Zm
q . Signsk(µ) takes as input µ ∈ Zm and outputs a signature σ,

independent of S, such that Aσ = H(µ) mod q. Verifypk(µ, σ) returns 1 if and

only if σ is in the domain and Aσ = H(µ) mod q, or 0 otherwise. The scheme

is proven to be strongly existentially unforgeable under a chosen-message attack

since it is complete, that is, for all generated keys (A,S), all messages µ and all

signatures σ, Aσ = H(µ) mod q.

A more recent scheme by Micciancio and Peikert [2012] also adopts hash-

and-sign, introducing a more efficient trapdoor than the one used in GPV.

Improvements to the key generation were made by Alwen and Peikert [2011].

However, more noteworthy were the further reductions Micciancio and Peikert

[2012] made to both. Comparatively, their contributions affirm simplicity and

speed over GPV. The public-key from GPV is the pair (A,AS) whereas this

scheme uses a public-key (A,AS + G) for some matrix G. The trapdoor for

GPV is the basis matrix A for a lattice. For Micciancio and Peikert’s scheme the

trapdoor A is derived from a transformation of the fixed, public lattice denoted

by the ‘gadget’ G. Using this (fixing) method allows for fast, parallel and even

offline calculations of the inversions, which is where many of the improvements are

achieved. The scheme then follows the general (KeyGen, Signsk ,Verifypk) model.

2.3.3 Fiat-Shamir Signatures

An alternative way of constructing a DSS was proposed by Fiat and Shamir [1986]

and Abdalla et al. [2002], which first proposes an identification scheme and then

adapts it to a DSS by means of the Fiat-Shamir transformation. Identification

schemes are between two parties, where one party (the prover) needs to convince

the other party (the verifier) they are whom they claim to be. The technique

2.3 The Paradigms Of Lattice-Based Cryptosystems 28

can be observed by considering the protocol by Schnorr [1989], a frequently used

proof of knowledge protocol based on the intractability of the discrete logarithm

problem. Details of the transformation are omitted (see Galbraith [2012] for

details) but it suffices to say that the security of the signature scheme follows if

the hash function H(·) : {0, 1}∗ → {0, 1}k, for a suitable value of k, is considered

as a random oracle.

Lattice-based signature schemes which use the Fiat-Shamir transformation are

mainly due to research by Lyubashevsky et al. [Lyubashevsky, 2009; Lyubashevsky,

2012; Güneysu et al., 2012; Abdalla et al., 2012; Bai and Galbraith, 2014b; Ducas

et al., 2013]. The procedures in the first publication by Lyubashevsky [2009] are

shown to be based on SIS. That is, if a solution is found for the DSS then a solution

is also found for SIS. The initial step taken in this scheme is to first construct a

lattice-based identification scheme whereby the challenge is treated as a polynomial

in R. The security of the identification scheme is based on the hardness of finding

the approximate shortest vector in the standard model as well as the random

oracle model. The identification scheme is then transformed into a DSS where

optimisations are made to the tight parameter settings, improving elements such

as the length of the signature and making it computationally infeasible to find

collisions in the hash function family H. For a complete description of the scheme

see Section 3.2 in the research by Lyubashevsky [2009].

The security of the scheme is dependent on the hardness of finding collisions

in certain hash function families. An adversary who is able to forge a signature

can then use this to find a collision in a hash function chosen randomly from H,

meaning that if the DSS is not strongly unforgeable then there exists a polynomial

time algorithm that can solve SVPγ for γ = Õ(n2) in the ideal R. Therefore,

forging a signature and furthermore finding a collision in a randomly chosen

h ← H is equivalent to finding short vectors in a lattice over R, that is, the

ring-SIS problem.

2.3 The Paradigms Of Lattice-Based Cryptosystems 29

The subsequent improvements made by Lyubashevsky [2012] (LYU) were

two-fold. The most significant change is that of the hardness assumption used,

adapting from ring-SIS to ring-LWE, which is shown to significantly decrease

the sizes of the signature and the keys, thereby improving efficiency. The second

improvement is during the signing procedure, which involves asymptotically shorter

signatures. This stage requires more complicated rejection sampling, so that the

signatures are independent from the secret-key, and sampling from the normal

distribution, wherein highly accurate computations are needed (see Section 4 in

the research by Lyubashevsky [2012]). The scheme, as in the previous scheme,

is shown to be strongly unforgeable and is based on the worst-case hardness of

finding short vectors in a lattice.

The general structure of these DSSs by Lyubashevsky [2009, 2012] are as

follows. Consider the secret-key as an m × n matrix S with small coefficients,

and the public-key as the pair (A,T) where A is an n×m matrix with entries

chosen uniformly at random from Zq and T ≡ AS mod q. Also an essential part

of the scheme, as already discussed, is the hash function, which is considered as

a random oracle outputting elements in Zm with small norms. In order to sign

a message µ, the signing algorithm first chooses a random y from some discrete

Gaussian distribution, then computes c = H(Ay mod q, µ) where the (potential)

signature is the pair (z, c) such that z = Sc+y, which is sent to the verifier should

it pass the rejection stage. Finally, the verification algorithm checks that ∥z∥ is

small and that c = H(Az−Tc mod q, µ). The details of the discrete Gaussian

stage and the importance of the restrictions on z will become evident later.

In many cases (such as research by Güneysu et al. [2012], Ducas et al. [2013],

and Bai and Galbraith [2014b]) the signature is considered as (z1, z2, c), allowing

the shortening of z1 or z2, which motivates various compression techniques. The

scheme by Bai and Galbraith [2014b] (BG) is based on the LWE signature scheme

LYU, whereby z2 is actually omitted from the scheme entirely. This is essentially

2.3 The Paradigms Of Lattice-Based Cryptosystems 30

Span{Sc}

(Sc)⊥

Span{Sc}

(Sc)⊥

Fig. 2.1 The graphs show the improvement bimodal Gaussians have to the rejection
sampling stage. The left (a) showing the LYU [Lyubashevsky, 2012] scheme and
the right (b) showing the BLISS [Ducas et al., 2013] scheme. The distribution of
z is shown in blue, fixing Sc and over the space of all y in (a) and all (b,y) in
(b), before the rejection step and its decomposition as a Cartesian product. The
dashed red curves represent the scaled (1/M) target distribution. Notice that the
likeliness of acceptance is much greater for (b) than (a).

achieved by adapting the scheme so that proof of knowledge of the pair (s, e)

for the LWE public-key (A,b = As + e mod q) only requires knowledge of

s. Algorithmic improvements (in particular within key generation) to the BG

signature scheme were made by Dagdelen et al. [2014], which was followed by

security improvements by Alkim et al. [2015]. The DSS by Alkim et al. [2015] is

named TESLA and its hardness is based on standard lattice problems. TESLA

is adapted to ideal lattices in the research by Akleylek et al. [2016], named

Ring-TESLA, which is the bases of the research in Chapter 5.

The current state-of-the-art in lattice-based DSSs is the proposed schemes by

Ducas et al. [2013] named BLISS and Akleylek et al. [2016] named Ring-TESLA.

The main contribution of BLISS is the significant improvement in the rejection

sampling stage, the major reduction in parameter sizes, and hence the substantial

reduction in key/signature size (see Table 2.5). As a consequence, this scheme

presents an important bridge between theoretical and practical lattice-based DSSs.

2.3 The Paradigms Of Lattice-Based Cryptosystems 31

To illustrate the importance of the rejection sampling stage to security, consider

the following DSS. The signer has a (short) secret-key pair s1, s2 ∈ R and a public-

key pair (a, t) where a ∈ R is chosen at random and t = as1 + s2. The signer then

randomly chooses y1,y2 ∈ Dm
σ and sends u = ay1 + y2 to the verifier who returns

a sparse c ∈ R. The signer then calculates zi = yi + sic (for i ∈ {1, 2}) and sends

z1, z2 to the verifier where it is checked that ∥zi∥ are small and az1 + z2− tc = u.

Using this scheme as it is, there is an inherent vulnerability in the values zi

sent to the verifier. As stated, yi is chosen from the distribution Dm
σ , therefore an

adversary knows the distribution of zi since they will follow the distribution of yi

skewed by the addition of sic, which is where the secret-key becomes susceptible.

This can be rectified by adapting the distribution of zi from Dm
Sc,σ so that it

follows the same distribution as yi ∼ Dm
σ . This is achieved through rejection

sampling, the idea is to find a value M such that for all (or all but a negligible)

x, f(x) ≤ M · g(x). Values for x are then drawn from g(x) and accepted with

probability f(x)
M ·g(x) ≤ 1, otherwise the process is restarted. If the previous condition

is satisfied ∀x, then the method will produce exactly the distribution f(x).

This technique can be used for the above scheme, however this imposes a

slight hindrance. Since both distributions follow a Gaussian-like distribution,

M must be quite large (for instance in LYU, M = 7.4) to satisfy the condition

Dm
σ (x) ≤ M · Dm

Sc,σ(x) for all x, where the problem exists in the tails of the

distributions. The effect of having a large M is that the probability of acceptance

is significantly smaller, therefore requiring more samples, incurring inefficiency.

By virtue of their novel use of bimodal Gaussians, BLISS currently show the

most optimal value for this stage in Fiat-Shamir inspired DSSs, presenting a value

M = 1.6. A juxtaposition of this is shown in Figure 2.12, illustrating how the

probability of acceptance significantly increases with the introduction of bimodal

Gaussians. Further comparing the repetition rates in other schemes (see Table 2.2
2This figure is in the BLISS publication and used with the authors’ permission.

2.3 The Paradigms Of Lattice-Based Cryptosystems 32

for GLP, Table 2.3 for BLISS and given that the repetition rate in GPV ≈ 10)

it becomes evident just how significant BLISS is as a practical lattice-based DSS.

To be able to generate the discrete bimodal Gaussian, the scheme is slightly

modified in the following way. Choose a bit b ∈ {0, 1} uniformly at random and

change the calculation of zi such that zi = yi + (−1)bsic. Therefore, zi will follow

the discrete bimodal Gaussian 1
2D

m
Sc,σ(x) + 1

2D
m
−Sc,σ(x). With some other small

alterations in the signing and verifying stages, a completely practical and secure

lattice-based DSS is achieved.

An improvement to BLISS was proposed by Ducas [2014a] (named BLISS-B),

which changes the geometric bound from BLISS to a more tight and natural

bound, and proposes a more efficient way to calculate the products of the secret-

key polynomials and hash output polynomial. The algorithmic change improves

upon BLISS by at least a factor of 1.2 in terms of speed-up.

The Ring-TESLA DSS by Akleylek et al. [2016] is an ideal lattice-based

equivalent of TESLA, the standard lattice-based DSS by Alkim et al. [2015],

both of which focus on tightly secure and provably secure instantiations. Post-

publication of Ring-TESLA, a flaw in the security reduction was found. The

flaw does not lead to an actual attack nor does it affect the security of the scheme,

however the specific instantiations are affected3. The fix for this is ongoing, with

attempts made by Barreto et al. [2016] and Chopra [2016].

Algorithmically, the schemes are based on the BG DSS [Bai and Galbraith,

2014b] and the optimisations of the BG scheme by Dagdelen et al. [2014], which

will now be discussed further. The BG scheme was inspired by the seminal works

of Lyubashevsky et al. [Lyubashevsky, 2009, 2012, Güneysu et al., 2012, Abdalla

et al., 2012, Ducas et al., 2013], and its intent was a reduction in signature size
3The security flaw is also discussed on the TESLA homepage (https://tesla.informatik.

tu-darmstadt.de/de/tesla/).

https://tesla.informatik.tu-darmstadt.de/de/tesla/
https://tesla.informatik.tu-darmstadt.de/de/tesla/

2.3 The Paradigms Of Lattice-Based Cryptosystems 33

(by omitting the requirement for z2), and also importantly removing the necessity

for costly discrete Gaussian sampling during Sign and Verify operations4.

At a high-level, the LYU signature schemes act like a proof of knowledge of

the secret pair (s, e), however the authors adapt this paradigm to create a scheme

where proof of knowledge of s suffices. This change provides a significant reduction

in signature size. Additionally, the discrete Gaussian requirements are now a

part of KeyGen, whereby the public-key is of the form (A,T ≡ AS + E mod q),

where E follows the discrete Gaussian distribution, and is a LWE instance. A

BG signature is computed by choosing a uniform vector y and using the product

of v ≡ Ay mod q in the hash with the message µ to produce a vector c. The

signature is then returned as the pair (z = y + Sc, c) so long as the signature is

found to be independent of the secret. Verifying the signature requires the lower

bits of w = Az−Tc ≡ Ay− Ec mod q, where if Ec is small enough, the MSB

of w will match those of v and therefore the MSBs of the hash output using w

will match those that used v.

The optimisations by Dagdelen et al. [2014] include the incorporation of the

public-key A as a global constant and a rearranging of the Sign algorithm. The

rearrangement of Sign has changed the calculation of w ≡ Az−Tc mod q in BG

to w ≡ Ay−Ec mod q, which saves on operational costs since v ≡ Ay mod q

is already calculated beforehand. Also, calculating Ec means the dense key T is

no longer required during Sign, and instead the smaller keys (S,E) are used.

The TESLA DSS by Alkim et al. [2015] is essentially the cryptoscheme by

Dagdelen et al. [2014], with improvements to security such as minimising the

underlying assumptions, removing the requirement of a secure PRNG for signing,

and improving the performance of its implementation in software. The provably

secure ideal lattice-based version of TESLA, Ring-TESLA, whilst not requiring
4Removing such a costly discrete Gaussian sampling stage was also the motivation for the

design of GLP.

2.4 Lattice-Based Encryption Schemes 34

on-device discrete Gaussian sampling, also assures provable security, parameters

are chosen according to its provided security reduction (as opposed to GLP and

BLISS), and offers an efficient lattice-based DSS based on Ring-LWE which

competes with GLP and BLISS in software.

2.4 Lattice-Based Encryption Schemes

Lattice-based encryption schemes have been proposed in works by Ajtai and

Dwork [1997] and Regev [2004,2005] and were improved with chosen-ciphertext

security by Peikert and Waters [2008] and Peikert [2008]. However, in seminal

work by Lindner and Peikert [2011] (now referred to as LP), an encryption scheme

with concrete parameters and security estimates is provided, which is shown to be

significantly more efficient than previous proposals. The ring-variant of the LP

scheme is described by Lindner and Peikert [2011] and Lyubashevsky et al. [2010],

which is extended by Lyubashevsky et al. [2013a] (now referred to as LPR), and

shows improvements in shrinking the key sizes by a factor of at least 200, which

then allows computational improvements in the encryption algorithm. The LP and

LPR algorithms will now be described, both are extremely similar and only differ in

their use of matrices and vectors (for LP) or polynomials (for LPR). Additionally,

for 128-bit security, the medium parameter set (n, q, σ) = (256, 4093, 3.33) is taken

from the work by Lindner and Peikert [2011], and is applied to both LP and

LPR. Brakerski et al. [2013] show that the modulus q = 4093 can be simplified to

212 = 4096, without an effect on the scheme’s security (more specifically it states

the modulus does not need to be a prime number).

Algorithm 2.1 defines the key generation, encryption, and decryption matrix-

vector operations in LP, and Algorithm 2.2 defines the key generation, encryption,

and decryption polynomial operations in LPR.

2.4 Lattice-Based Encryption Schemes 35

Algorithm 2.1 The LWE Encryption scheme by Lindner and Peikert [2011] (LP)
1: procedure KeyGen(A, 1ℓ)
2: A← Zn×n

q

3: R1,R2 ← Dn×ℓ
σ

4: P ≡ R1 −A ·R2 mod q
5: end procedure
6: procedure Enc(pk = (A,P),m ∈ Σℓ)
7: e1, e2, e3 ← Dn

σ ×Dn
σ ×Dℓ

σ

8: m̄ = encode(m)
9: c1 ≡ et

1A + et
2 mod q

10: c2 ≡ et
1P + et

3 + m̄t mod q
11: end procedure
12: procedure Dec(sk = (R2), ct

1, ct
2)

13: m = decode(ct
1R2 + c2)

14: end procedure

Since Algorithm 2.1 is essentially equivalent to Algorithm 2.2 (with the latter

using polynomials over the ring Rq, instead of vectors and matrices), only the

former will be described. The idea is to essentially hide the secret-key information

within a LWE sample, where this then becomes the public-key information, and

where the message data is also hidden with a LWE sample. Therefore, the public-

key and message data appear to a passive adversary as uniformly random, which

achieves the scheme’s semantic security.

KeyGen derives a uniformly random matrix A← Zn×n
q , two matrices R1 and

R2 drawn from the discrete Gaussian distribution with parameter σ, where the

public-key is of the form pk = (A,P ≡ R1−A ·R2 mod q) and the secret-key is

of the form sk = R2. The matrix R1 is only used during KeyGen. Discovering

the secret information (R2) from the publicly available P is equivalent to solving

the search variant of LWE.

Encryption has inputs pk,m ∈ Σℓ and first generates three error vectors

e1, e2, e3 from the discrete Gaussian distribution, which are used to mask the

encoded message data, m̄ = encode(m), in the ciphertext pair c1 ≡ et
1A + et

2

2.4 Lattice-Based Encryption Schemes 36

Algorithm 2.2 The Ring-LWE Encryption scheme by Lyubashevsky et al. [2013a]
(LPR)

1: procedure Key Generation(a, 1ℓ)
2: a← Rn

q

3: r1, r2 ← Dn
σ

4: p ≡ r1 − a · r2 ∈ Rn
q

5: end procedure
6: procedure Encryption(a,p,m ∈ Σn)
7: e1, e2, e3 ← Dn

σ

8: m̄ = encode(m) ∈ Rn
q

9: c1 ≡ e1 · a + e2 ∈ Rn
q

10: c2 ≡ e1 · p + e3 + m̄ ∈ Rn
q

11: end procedure
12: procedure Decryption(c1, c2, r2)
13: m = decode(c1 · r2 + c2) ∈ Σn

14: end procedure

mod q and c2 ≡ et
1P+et

3 +m̄t mod q. Decryption requires no number generation,

just the decoding of the computation ct
1R2 + c2 given inputs sk, c1, c2.

The function used to encode/decode was proposed by Lindner and Peikert

[2011] since some small noise is still present after decryption, resulting in an

erroneous message retrieval. The proposed threshold encoding function maps

the individual bits of the message data m ∈ {0, 1} to integers of the form

encode(m) = m·⌊ q
2⌋, where decoding returns a bit 1 if and only if m ∈ [−⌊ q

4 , ⌋, ⌊
q
4⌋),

and 0 otherwise.

2.4.1 Summary and Evaluation of Lattice-Based Encryp-

tion Designs

In this section, a summary is provided of implementation results for practical

lattice-based encryption schemes. The lattice-based scheme investigated here

for which implementation results are available is LPR by Lyubashevsky et al.

[2013a]. Table 2.1 shows results of previous hardware designs of LPR, however

these benchmarks are not all on the same platform, hence they are not all directly

2.4 Lattice-Based Encryption Schemes 37

comparable. The LP standard lattice-based encryption scheme by Lindner and

Peikert [2011] is the focus of Chapter 4, which presents the first practical results

for this scheme.

Lattice-based encryption schemes are shown to be more efficient for the ideal

lattice-based scheme by Lyubashevsky et al. [2013a] (built on previous work by

Lyubashevsky et al. [2010]), which is essentially a ring-LWE variant of the original

scheme based on standard LWE by Lindner and Peikert [2011]. However, there are

many arguments to employing an encryption scheme based on standard lattices,

instead of ideal lattices, and designs for standard lattice-based encryption can

be currently seen as understudied. With regards to key and ciphertext sizes;

the standard lattice-based encryption scheme LP has a public-key (A,P) of

size 1180 kb, a secret-key (R2) of size 394 kb, and a ciphertext size of 4.6 kb,

whereas the ideal lattice-based encryption scheme LPR has a public-key (a,p)

of size 13.3 kb, a secret-key (r2) of size 6.7 kb, and a ciphertext size of 6.7

kb, both for 128-bit parameters. From a software point-of-view, Göttert et al.

[2012] give a comprehensive evaluation of LP and LPR encryption schemes

benchmarked on an Intel Core 2 Duo CPU running at 3 GHz with 4 Gb of

RAM as well as Du et al. [2015] which benchmark LPR on a Core i7-4771 CPU

running at 3.5 GHz and 8 GB of RAM. Other software-based implementations

of the encryption schemes all target microcontrollers; Pöppelmann et al. [2015]

target an ATxmega128A1 microcontroller clocked at 32 MHz, which produces 36

signing and 148 verification operations per second. Liu et al. [2015] also target

an ATxmega128A1 microcontroller and produces 48 signing and 106 verifying

operations per second. Other platforms have also been targeted; Boorghany

et al. [2015] target a ATmega64 clocked at 8 MHz producing 2 signing and 5

verifying operations per second, and Boorghany and Jalili [2014b] which target a

ATxmega64A3 clocked at 32 MHz, producing 6 signing and 13 verifying operations

per second.

2.4 Lattice-Based Encryption Schemes 38

Table 2.1 Post-place and route results of ring-LWE (RLWE) encryption/decryption;
for balanced designs by Göttert et al. [2012] (GFSBH) and Pöppelmann and
Güneysu [2013] (PG13), and for compact/low-area designs by Roy et al. [2014b]
(RVMCV) and Pöppelmann and Güneysu [2014] (PG14) on FPGA. Results are
also provided for NTRUEncrypt by Kamal and Youssef [2009b] (KaYo), as well
as for elliptic-curve encryption by Güneysu and Paar [2008] (GP) and Rebeiro
et al. [2012] (RRM).

Operation & Algorithm Device LUT/FF/SLICE BRAM/DSP MHz Cycles Ops/s
RLWE Encrypt (GFSBH) V6LX240T 298016/− /143396 −/− − − < 18200
RLWE Decrypt (GFSBH) V6LX240T 124158/− /65174 −/− − − < 29540
RLWE Encrypt (PG13) S6LX16 4121/3513/− 14/1 160 6861 23321
RLWE Decrypt (PG13) S6LX16 4121/3513/− 14/1 160 4404 36331
RLWE Encrypt (PG13) V6LX75T 4549/3624/1506 12/1 262 6861 38187
RLWE Decrypt (PG13) V6LX75T 4549/3624/1506 12/1 262 4404 59492
RLWE Encrypt (PG14) S6LX9 282/238/95 2/1 144 136212 1057
RLWE Decrypt (PG14) S6LX9 94/87/32 1/1 189 66338 2849
RLWE Encrypt (RVMCV) V6LX75T 1349/860/− 2/1 313 6300 49751
RLWE Decrypt (RVMCV) V6LX75T 1349/860/− 2/1 313 2800 109890
NTRU [Enc/Dec] (KaYo) XCV1600E 27292/5160/14352 −/− 62 − −
ECC-P224 (GP) XC4VFX12 1825/1892/1580 11/26 487 178000 2740
ECC-B233 (RRM) XC5VLX85T 18097/− /5644 −/− 156 1919 81300

The results presented in Table 2.1 show results for hardware designs of the

ring-LWE encryption scheme LPR. The results shown are for ring-LWE LPR

hardware designs [Göttert et al., 2012, Pöppelmann and Güneysu, 2013] and

low-area ring-LWE LPR designs [Roy et al., 2014b, Pöppelmann and Güneysu,

2014] for comparison.

The first LPR hardware design by Göttert et al. [2012] is highly impractical

in comparison to later designs, possibly due to the use of a fast Fourier transform

(FFT) instead of the more efficient (in this case) number theoretic transform

(NTT). Pöppelmann and Güneysu [2013] propose an efficient hardware architecture

for the LPR encryption scheme, providing results for Spartan-6 and Virtex-6

FPGA platforms. The hardware design utilises the NTT polynomial multiplier

by Pöppelmann and Güneysu [2012], a table-based discrete Gaussian sampler,

and exploits block-RAM for importing and exporting all keys, message data, and

ciphertext data. This is furthered for the design goal of low area [Pöppelmann

and Güneysu, 2014], in which a small schoolbook multiplier is used (instead of

2.5 Lattice-Based Digital Signature Schemes 39

a large NTT multiplier) which uses the FPGA DSP. The hardware results show

significant reduction in area consumption, at the cost of increased latency.

The main contribution of the hardware design by Roy et al. [2014b] is im-

provements within the NTT and discrete Gaussian sampling components. Firstly,

pre-computed values stored in the design by Pöppelmann and Güneysu [2012] are

instead computed on-the-fly, reducing BRAM accesses. Secondly, a high-speed

discrete Gaussian sampler is proposed which reduces the clock cycle count pre-

viously achieved. The results show a much higher throughput in comparison to

other LPR hardware designs.

2.5 Lattice-Based Digital Signature Schemes

In this section the practical lattice-based signature schemes in software and

hardware are examined and discussed.

2.5.1 On the Instantiation of GPV Hash-and-Sign Signa-

tures

The most significant instantiation of the schemes based on GPV is the work by

Bansarkhani and Buchmann [2013], which amalgamates the scheme by Gentry

et al. [2008] with the efficient trapdoor construction proposed by Micciancio and

Peikert [2012]. Two variants are presented; a matrix version operating in the

general setting and a more efficient ring version. The matrix version incorporates

the preimage sampling algorithm of Micciancio and Peikert [2012] and a technique

to add perturbation. Generating the perturbation vectors is essential so that

the preimages do not give any information away about the secret-key. This is

achieved by Peikert’s [2010] convolution technique which also requires efficient

square root computation. This component is the most time consuming of the

2.5 Lattice-Based Digital Signature Schemes 40

signing procedure, consuming over 60% of the overall runtime. The ring scheme

[Bansarkhani and Buchmann, 2013] is shown to be based on the ring-LWE problem,

adopting similar constructions and discrete Gaussian sampling is optimised by

adopting the inversion transform method, rather than using rejection sampling.

The actual implementation of the ring scheme (see Table 2.5) provides 100-bit

security and uses the FLINT and GSL libraries5 for basic arithmetic.

2.5.2 Practical Instantiations of Ideal Lattice-Based Fiat-

Shamir Signatures

This section introduces the ideal lattice-based Fiat-Shamir signature schemes by

Güneysu et al. [2012] (GLP) and Ducas et al. [2013] (BLISS) in more detail,

whilst also examining the computational efficiency of each of their components.

The reasons for the discussion of GLP and BLISS and common building blocks

are that both schemes have been extensively analysed and currently offer the

best trade-off between signature and key sizes as well as security. Thus they are

currently considered to be the most practical lattice-based signature schemes.

GLP

Table 2.2 The Parameters of the GLP Signature Scheme by Güneysu et al. [2012].

Name of the scheme GLP-I GLP-II
Security 80-bits ≥ 256-bits

(n, q) (512, 8383489) (1024, 16760833)
k 214 215

Repetition rate 7 7

The instantiation based on ideal-lattices by Güneysu et al. [2012] (GLP) follows

the signature scheme of Lyubashevsky [2012] and specifically targets reconfigurable

hardware and constrained devices. This is done by favouring uniformly random
5The fast library for number theory (FLINT) is available at http://www.flintlib.org/

and the GNU scientific library (GSL) is available at https://www.gnu.org/software/gsl/.

http://www.flintlib.org/
https://www.gnu.org/software/gsl/

2.5 Lattice-Based Digital Signature Schemes 41

Algorithm 2.3 Key Generation for GLP
procedure KeyGen(1λ)

Generate sk where s1, s2
$← R1

Generate pk where a $← R and t← as1 + s2
Return (pk = (a, t), sk = (s1, s2))

end procedure

Algorithm 2.4 Signing Algorithm for GLP
procedure Sign(µ, a, s1, s2)

y1,y2
$← Rk

c← H
(
(ay1 + y2)(1), µ

)
z1 ← s1c + y1, z2 ← s2c + y2

if z1 or z2 /∈ Rk−32, then go to step 1

z′
2 ← Compress (az1 − tc, z2, q, k − 32)

if z′
2 = ⊥, then go to step 1

Return (z1, z′
2, c)

end procedure

Algorithm 2.5 Verification Algorithm for GLP
procedure Verify(µ, z1, z′

2, c, a, t)
Accept iff

z1, z′
2 ∈ Rk−32 and

c = H
(
(az1 + z′

2 − tc)(1), µ
)

end procedure

distributed noise over Gaussian noise for secret-keys and masking values, and

by basing the hardness assumption on an ‘aggressive’ version of the decisional

ring-LWE problem. This assumption is called the Decisional Compact Knapsack

(DCKq,n) problem, whereby an adversary must distinguish between the uniform

distribution over R × R and the distribution (a, as1 + s2), where a $← R and

s1, s2
$← R1. However, the aggressive compression is a source of insecurity and in

2.5 Lattice-Based Digital Signature Schemes 42

the full version by Ducas et al. [2013] it has been shown that the security of the

scheme is around 80-bits instead of the 100-bits claimed by Güneysu et al. [2012].

For reference, the GLP algorithms for KeyGen (Algorithm 2.3), Sign (Algo-

rithm 2.4), and Verify (Algorithm 2.5) are provided as well as its parameters

in Table 2.2 and key and signature sizes listed in Table 2.5. The secret-keys

of the scheme are the random polynomials s1, s2 and the public-key is (a, t),

where a $← R and t ← as1 + s2. To sign a message µ, two ‘masking’ polyno-

mials y1,y2
$← Rk are chosen uniformly at random and c ← H(ay1 + y2, µ)(1)

is computed where ay1 + y2 is the most expensive operation during the signing

procedure. Note that the hash function is only evaluated on the most significant

bits of the coefficients of the input, denoted by the (1) notation. The actual

signature z1, z2 is computed as zi ← sic + yi where the polynomial c is generated

from 160 bits of the output of the random oracle (instantiated as a hash function)

and just contains 32 coefficients which are ±1. Since c, s1 and s2 are small and

contain a lot of zeros (that is, they are sparse) no modular reduction modulo q

is necessary when computing s1c and s2c. But before sending the signature, the

low-cost rejection sampling step must be performed where the signature is only

sent if and only if z1, z2 ∈ Rk−32. The parameter k, which first appears in line

1 of the signing algorithm, controls the trade-off between the security and the

runtime of the scheme. The smaller k is, the more secure the scheme becomes

(and the shorter the signatures get), but the time to sign will increase. The

Compress(az1 − tc, z2, q, k − 32) function is the reason for the relatively short

signatures as a large amount of z2 is removed (the scheme also works without the

compression). It encodes the carries that would have been caused by z2 into z′
2

and ensures correctness so that (ay1 + y2)(1) = (az1 + z′
2 − tc(1)).

The GLP scheme has currently been implemented on reconfigurable hardware

by Güneysu et al. [2012], CPUs by Güneysu et al. [2013], and microcontrollers by

Boorghany and Jalili [2014a] (see Section 2.5.3 for further discussions).

2.5 Lattice-Based Digital Signature Schemes 43

Table 2.3 The Parameters of the BLISS Signature Scheme by Ducas et al. [2013].

Name of the scheme BLISS-I BLISS-II BLISS-III BLISS-IV

Security 128-bits 128-bits 160-bits 192-bits
(n, q) (512,12289) (512,12289) (512,12289) (512,12289)

Secret-key densities δ1, δ2 0.3 , 0 0.3 , 0 0.42 , 0.03 0.45, 0.06
Gaussian std. dev. σ 215.73 107.86 250.54 271.93

Weight of the challenge κ 23 23 30 39
Dropped bits d in z2 10 10 9 8

Verif. thresholds B2, B∞ 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 1.6 7.4 2.8 5.2

BLISS

The most efficient instantiation of the BLISS signature scheme is based on ideal-

lattices (as used by Lyubashevsky et al. [2010, 2013a]) with the BLISS KeyGen,

Sign, and Verify algorithms given in Algorithms 2.6, 2.7, and 2.8. Parameters are

listed in Table 2.3 with key and signature sizes given in Table 2.5.

The generation of keys involves uniform sampling of two small, sparse polyno-

mials f and g, computation of the rejection condition Nκ(S), and the computation

of f−1. Inverting f makes KeyGen significantly more complex, particularly in

comparison to the equivalent stage in GLP.

For the signing stage, two polynomials y1,y2 are sampled from the discrete

Gaussian distribution Dn
σ (instead of uniformly random as in GLP). Sampling

from a Gaussian distribution is computationally very expensive due to the complex

operations (such as calculation of the exponential function) or large tables (as

shown by Dwarakanath and Galbraith [2014]). Section 2.6.2 describes the ongoing

research in this area.

The calculation of u is simplified since the computation of a1y1 is performed

in an FFT-enabled ring using modulus q, instead of 2q. The computation of u is

then finalised by multiplying the constant ζ with a1y1, and adding y2. The d most

significant bits of u are then hashed with the message µ with the output being

2.5 Lattice-Based Digital Signature Schemes 44

Algorithm 2.6 Key Generation for BLISS
procedure KenGen(1λ)

Choose f ,g as uniform polynomials with exactly d1 = ⌈δ1n⌉ entries in
{±1} and d2 = ⌈δ2n⌉ entries in {±2}

S = (s1, s2)t ← (f , 2g + 1)t

Compute rejection condition Nκ(S) that accepts approx. 25% of all keys
aq = (2g + 1)/f mod q (restart if f is not invertible)
Return (pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q

end procedure

Algorithm 2.7 Signing Algorithm for BLISS
procedure Sign(µ, pk = A, sk = S)

y1,y2 ← DZn,σ

u = ζ · a1 · y1 + y2 mod 2q
c← H(⌊u⌉d mod p, µ)
Choose a random bit b
z1 ← y1 + (−1)bs1c
z2 ← y2 + (−1)bs2c
Continue with probability 1

/ (
M exp

(
−∥Sc∥2

2σ2

)
cosh

(
⟨z,Sc⟩

σ2

))
otherwise

restart
z†

2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p
Return (z1, z†

2, c)
end procedure

Algorithm 2.8 Verification for BLISS
procedure Verify(µ, pk = A, (z1, z†

2, c))
if ∥(z1|2d · z†

2)∥2 > B2 then reject
if ∥(z1|2d · z†

2)∥∞ > B∞ then reject
Accept iff c = H

(⌊
ζ · a1 · z1 + ζ · q · c

⌉
d
+z†

2 mod p, µ)
end procedure

2.5 Lattice-Based Digital Signature Schemes 45

interpreted as a polynomial c. Similar to GLP, c is also sparse and small but is

generated differently and more efficiently from the output of the hash function.

The polynomial c is then multiplied by the secret-key polynomials s1, s2, where

the polynomials y1,y2 are used to ‘mask’ the secret-key inside of the signature.

Rejection sampling is then performed so that no information is leaked about the

secret-key, whereby Sign may restart. The signature z2 is then compressed and

(z1, z†
2, c) is returned.

The verification stage first validates the Euclidean and infinity norms of the

signature, then the input to the hash function is reconstructed and it is checked

whether the corresponding hash output matches c from the signature. It should

be evident from this description that the most costly computational components

in BLISS are the dense polynomial multiplication, discrete Gaussian sampling,

and sparse multiplication stages (as described by Pöppelmann et al. [2014]).

The main optimisations made in the improved BLISS-B are found in the

signing algorithm, which adapt the calculations of the signature polynomials. This

is achieved by proposing an algorithm which reduces the norm of ∥Sc∥ by using

ternary representation of the challenge vectors modulo 2, using the binary vector c.

The result produces a tighter and more natural bound. The verification algorithm

is unchanged from BLISS.

The software results for BLISS and BLISS-B are shown in Table 2.5, which

shows a speed-up of 1.2x for BLISS-B compared to BLISS, for the main 128-bit

parameters. Hardware results for BLISS are shown in Table 2.6.

Ring-TESLA

There are several lattice-based DSSs which follow the original structure by Bai

and Galbraith [2014b]. The most practical of these is Ring-TESLA, since it is

based on ideal lattices. The parameters for Ring-TESLA are shown in Table

2.4 with KeyGen, Sign, and Verify algorithms given in Algorithms 5.1, 5.2, and

2.5 Lattice-Based Digital Signature Schemes 46

5.3, respectively. Currently, the only practical results for Ring-TESLA, as well

as the BG and TESLA DSS (standard lattices), are provided in software (see

Table 2.5). Hardware designs of Ring-TESLA are the basis for the research in

Chapter 5.

The generation of the Ring-TESLA keys firstly assumes the generation of the

global constant polynomials a1, a2
$← R×

q , which are publicly known in advance and

can be shared amongst arbitrarily many signers. As already described, the signing

procedure for Ring-TESLA does not require discrete Gaussian sampling since

this is performed during key generation instead. This is achieved by generating the

secret-key sk as s, e1, e2 ← Dn
σ , with the error polynomials e1, e2 going through a

validity check to ensure the signatures are short and verify correctly. This check

is defined as checkE(·), which uses a function maxk(·), takes as input a vector

and returns the kth largest entries. The error polynomials e1, e2 are rejected if∑ω
k=1 maxk(ei) is greater than a threshold, for either e1 or e2. Otherwise the error

polynomials are accepted, where the secret-key is output as sk = (s, e1, e2) and

the public-key is pk = (t1, t2) = (a1s + e1 mod q, a2s + e2 mod q).

To sign a message µ, a uniform polynomial y $← Rq,[B] is generated for use in

the calculation of the signature and well as for validity checks. Firstly, it is used

to calculate intermediate polynomials v1 ≡ a1y mod q and v2 ≡ a2y mod q,

which are input into the hash function H(·) along with the message data µ to

output the bit-string c. An encoding function F : {0, 1}κ → Bn,ω (as described by

Bai and Galbraith [2014b]) then maps this bit-string to a low-Hamming weight

(LHW) polynomial c with ω 1 values and n− ω 0 values, where F is required to

be close to an injective function. The LHW polynomial c is then used to calculate

the signature z ≡ y + sc as well as the polynomials w1 ≡ v1 − e1c mod q and

w2 ≡ v2 − e2c mod q which are used to check the validity of a signature.

The verification algorithm is essentially equivalent to the signing algorithm

without the need for uniform polynomial generation. The intermediate polynomials

2.5 Lattice-Based Digital Signature Schemes 47

are calculated as w′
1 ≡ a1z− t1c mod q and w′

2 ≡ a1z− t2c mod q, which are

then input into the hash function to output c′. Should the signature size be valid

as well as c = c′, the signature is verified.

Both sign and verify algorithms for Ring-TESLA incorporate full (and dense)

polynomial multiplication computations (a1y mod q, a2y mod q for sign and

a1z mod q, a2z mod q for verify) in the ring R in which an optimised multiplier

can be used. They can also both exploit the use of a LHW polynomial multiplier

for multiplications with the LHW polynomial c.

Implementations of the BG inspired schemes, currently only available in

software, are shown in Table 2.5. These include the scheme by Akleylek et al.

[2016] (Ring-TESLA, Intel Core i7-5820K) which, compared to BLISS and

BLISS-B implementations, illustrates the speed BLISS gains by employing NTRU

assumptions. The standard lattice-based DSSs by Dagdelen et al. [2014] (BG,

Intel Core i7-4770K) and Alkim et al. [2015] (TESLA, Intel Core i7-4770K) are

also given in Table 2.5, but due to their much larger key sizes they cannot be

considered practical, unless for highly secure applications.

2.5.3 Performance Evaluation

In this section, a summary is provided of implementation results for practical

lattice-based DSSs, with some comparative results from classical schemes from

the literature. As discussed in Section 2.3.1, there are currently no practical

instantiations of the GGH signature scheme by Goldreich et al. [1996] and imple-

mentations of NTRUSign by Hoffstein et al. [2003], like Driessen et al. [2008] are

vulnerable to cryptanalysis, so they will not be considered further. Lattice-based

schemes investigated here for which implementation results are available are GPV

by Gentry et al. [2008], LYU by Lyubashevsky [2012], GLP by Güneysu et al.

[2012], BLISS by Ducas et al. [2013], TESLA by Dagdelen et al. [2014] and

2.5 Lattice-Based Digital Signature Schemes 48

Table 2.4 The Parameters of the Ring-TESLA Signature Scheme by Akleylek
et al. [2016].

Name of the scheme Ring-TESLA-I Ring-TESLA-II

Security 80-bits 128-bits
(n, q) (512,8399873) (512,39960577)

Weight of the challenge ω 11 19
Gaussian std. dev. σ 30 52
Dropped bits d in z2 21 23

Error threshold L 814 2766
Sign/Verify thresholds B, U 221 − 1, 993 222 − 1, 3173

Repetition rate 4.3 2.9

Alkim et al. [2015], and Ring-TESLA by Akleylek et al. [2016] for DSSs. For

a quick overview, all DSSs considered for evaluation, their secret-key, public-key

and signatures sizes as well as available software (CPU) results are summarised in

Table 2.5.

The software results compared in Table 2.5 are the ideal lattice-based DSSs

designs by Ducas et al. [2013] (BLISS, Intel Core i7 3.4 GHz), Ducas [2014a]

(BLISS-B, Intel Core i7 3.4 GHz), Akleylek et al. [2016] (Ring-TESLA, Intel

Core i7-5820K), Güneysu et al. [2013] (GLP-I, Intel Core i5-3210M), Weiden et al.

[2013] (LYU-ring, AMD Opteron 2.3 GHz), and Bansarkhani and Buchmann

[2013] (GPV-ring, AMD Opteron 2.3 GHz) are also compared to standard lattice-

based DSSs by Dagdelen et al. [2014] (BG, Intel Core i7-4770K) and Alkim et al.

[2015] (TESLA, Intel Core i7-4770K). Since these benchmarks are not all on

the same platform they are not all directly comparable, which is similar for the

hardware results in Table 2.6.

The fastest DSS with regard to signing and also with the smallest signature

(5.6 kb) is currently BLISS, and BLISS-B, (implemented in plain C) due to

the low amount of rejections, fast Gaussian sampling using a large CDT table,

and small parameters for n and q. The structural disadvantage of GLP (more

rejections, larger n and q) is almost compensated by the optimised design by

2.5 Lattice-Based Digital Signature Schemes 49

Algorithm 2.9 Key Generation for Ring-TESLA
procedure KeyGen(1λ, a1, a2)

s, e1, e2 ← Dn
σ

if checkE(e1) = 0 ∨ checkE(e2) = 0 then
Restart

end if
t1 ≡ a1s + e1 mod q
t2 ≡ a2s + e2 mod q
sk ← (s, e1, e2), pk ← (t1, t2)
return (sk, pk)

end procedure

Algorithm 2.10 Signing Algorithm for Ring-TESLA
procedure Sign(µ, a1, a2, s, e1, e2)

y $← Rq,[B]
v1 ≡ a1y mod q
v2 ≡ a2y mod q
c = H(⌊v1⌉d,q, ⌊v2⌉d,q, µ)
c = F (c)
z← y + sc
w1 ≡ v1 − e1c mod q
w2 ≡ v2 − e2c mod q
if [w1]2d , [w2]2d /∈ R2d−L

∨ z /∈ RB−U then
Restart

end if
return (z, c)

end procedure

Algorithm 2.11 Verification for Ring-TESLA
procedure Verify(µ, z, c, a1, a2, t1, t2)

c = F (c)
w′

1 ≡ a1z− t1c mod q
w′

2 ≡ a2z− t2c mod q
c′ = H(⌊w′

1⌉d,q, ⌊w′
2⌉d,q, µ)

if c = c′ ∧ z ∈ RB−U then
return 1

else
return 0

end if
end procedure

2.5 Lattice-Based Digital Signature Schemes 50

Güneysu et al. [2013] using assembly optimisation and vectorisation (that is, AVX

extensions). As verification almost only requires polynomial multiplication, the

vectorised GLP design is twice as fast as BLISS.

Thus in the future, it is expected that improvements regarding BLISS, similar

to the vectorisation ideas of Güneysu et al. [2013], could also be applied. Moreover,

for the signing procedure of BLISS, the impact of higher security levels on

performance is moderate as n and q stay the same, with the significant changes

being in the discrete Gaussian sampler and number of rejections. As discrete

Gaussian sampling is not needed for verification, the runtime of verification is

basically independent of the security level. The LYU design by Weiden et al.

[2013] is not competitive, mainly due to larger parameters and also because the

implementation uses slow rejection sampling and relies on the NTL library for

basic arithmetic. For GPV [Gentry et al., 2008], initial outputs and key sizes were

many megabits long and even with improvements by Bansarkhani and Buchmann

[2013], signature and key sizes are still large in practice, around 250 kb for security

of around 100 bits. With the improvements proposed by Micciancio and Peikert

[2012], their scheme alleviates the sizes of the signatures and keys to roughly

100 kb, a drastic improvement over GPV; however for practical applications this

is still significantly large and the implementation cannot compete with GLP,

BLISS, or Ring-TESLA.

Ring-TESLA is fairly appealing in comparison to GLP and BLISS, due to

only requiring uniform random noise - therefore no need for a discrete Gaussian

sampler - and signatures being uniformly distributed - meaning Huffman coding

for shorter signatures is not required, which is used by Pöppelmann et al. [2014],

and consumes significant computational resources. Ring-TESLA also has the

attractive characteristic of being based on ring-LWE, as opposed to the NTRU

assumptions of BLISS. This quality may seem attractive to practitioners since

many NTRU-based schemes have been broken (see Section 2.3.1) as well as

2.5 Lattice-Based Digital Signature Schemes 51

the patenting issues surrounding NTRU. However, Ring-TESLA does suffer in

comparison to BLISS by having significantly larger parameter sizes (bit sizes

of polynomial coefficients are more than double versus BLISS), as well as an

increase in key and signature sizes which can be seen in Table 2.5, although

showing competitiveness against signing/verifying operations per second. Also, as

already discussed, there is a security issue with Ring-TESLA.

Table 2.5 A summary of ideal and standard lattice-based DSSs and schemes based
on classical assumptions. Results have been benchmarked on an Intel Core i7 at
3.4 GHz, 32GB RAM with openssl 1.0.1c, where performance has been scaled to
3.4 GHz based on cycle counts.

Scheme Security Sign. Size sk Size pk Size Sign./s Ver./s

BG 128-bits 12 kb 870 kb 1540 kb 2800 10000
TESLA-416 128-bits 10 kb 1540 kb 10650 kb 4600 13800
TESLA-768 >128-bits 19 kb 26346 kb 33817 kb 1430 3900

LYU-ring 100-bits 103 kb 103 kb 65 kb 36 260
GPV-ring 100-bits 240 kb 191 kb 300 kb 48 370
GLP-I 80-bits 9.5 kb 2 kb 12 kb 5300 75500
BLISS-I 128-bits 5.6 kb 2 kb 7 kb 8000 33000
BLISS-II 128-bits 5 kb 2 kb 7 kb 2000 33000
BLISS-III 160-bits 6 kb 3 kb 7 kb 5000 32000
BLISS-IV 192-bits 6.5 kb 3 kb 7 kb 2500 31000
BLISS-BI 128-bits 5.6 kb 2 kb 7 kb 9600 33000
BLISS-BII 128-bits 5 kb 2 kb 7 kb 5600 33000
BLISS-BIII 160-bits 6 kb 3 kb 7 kb 8000 32000
BLISS-BIV 192-bits 6.5 kb 3 kb 7 kb 6250 31000
Ring-TESLA-I 80-bits 11.4 kb 12.5 kb 23.5 kb 6600 20000
Ring-TESLA-II 128-bits 11.9 kb 13.7 kb 26 kb 6600 20000

RSA-2048 112-bits 2 kb 2 kb 2 kb 800 27000
RSA-4096 128-bits 4 kb 4 kb 4 kb 100 7500
ECDSA-256 128-bits 0.5 kb 0.25 kb 0.25 kb 9500 2500
ECDSA-384 192-bits 0.75 kb 0.37 kb 0.37 kb 5000 100

Regarding these implementations on constrained devices or microcontrollers;

Oder et al. [2014] target an ARM Cortex-M4F microcontroller, which compares

different samplers (Bernoulli, Knuth-Yao, and Discrete Ziggurat) and operates at

2.5 Lattice-Based Digital Signature Schemes 52

168 MHz. The device produces 28 signing, 167 verification and 0.46 key generation

operations per second. Boorghany et al. [2015] and Boorghany and Jalili [2014a]

provide an implementation of GLP and BLISS used as an identification scheme

on 8-bit microcontroller architectures (Atmega and ATxmega), showing that

lattice-based DSSs perform well even on very constrained devices. The Gaussian

sampler is based on the CDT and the table currently fills a large part of the flash.

However, the techniques of Pöppelmann et al. [2014] should be directly applicable

to reduce the table size with a hopefully moderate impact on runtime. As the

signature schemes are implemented as identification schemes their runtimes are

not discussed.

For reconfigurable hardware, results are available for GLP and BLISS and

are summarised in Table 2.6. While the speed of the GLP implementation,

with roughly 1000 signing and verification operations per second, is good in

comparison with classical schemes, the implementation by Güneysu et al. [2012]

and particularly the usage of schoolbook multiplication is suboptimal given works

on fast multiplication like Roy et al. [2013a], despite the larger area comsumption.

The BLISS implementation by Pöppelmann et al. [2014] uses the NTT multiplier

proposed by Pöppelmann and Güneysu [2012] and achieves high throughput for

signing and verification. The resource consumption is also reasonable and the

design fits on low-cost Spartan-6 devices. Usage of the improved NTT multiplier

design by Roy et al. [2013a] might even give a further reduction of the resource

consumption. For BLISS, two variants are given; one implementing the improved

CDT approach and another one using the Bernoulli techniques of Ducas et al.

[2013].

2.6 Building Blocks 53

Table 2.6 A summary of hardware instantiations of DSSs on Virtex-5 (V5) and
Spartan-6 (S6), comparing those based on lattice problems (GLP by Güneysu
et al. [2012] and BLISS-I by Pöppelmann et al. [2014]) with those of RSA and
ECDSA (results taken from Pöppelmann et al. [2014]).

Scheme Security Description Device Resources Ops/s

GLP-I (Sign) 80-bits q = 8383489, n = 512 S6 LX16 7,465 LUT/ 8,993 FF/
28 DSP/ 29.5 BRAM18 931

GLP-I (Ver) 80-bits q = 8383489, n = 512 S6 LX16 6,225 LUT/ 6,663 FF/
8 DSP/ 15 BRAM18 998

BLISS-I (Sign) 128-bits CDT sampler S6 LX25 7,491 LUT/ 7,033 FF/
6 DSP/ 7.5 BRAM18 7,958

BLISS-I (Sign) 128-bits Bernoulli sampler S6 LX25 9,029 LUT/ 8,562 FF/
8 DSP/ 6.5 BRAM18 8,081

BLISS-I (Ver) 128-bits - S6 LX25 5,275 LUT/ 4,488 FF/
3 DSP/ 4.5 BRAM18 14,438

RSA (Sign) 103-bits RSA-2048; private key V5 LX30 3,237 LS/ 17 DSPs 89

ECDSA (Sign) 128-bits Full ECDSA; secp256r1 V5 LX110 32,299 LUT/FF pairs 139

ECDSA (Ver) 128-bits Full ECDSA; secp256r1 V5 LX110 32,299 LUT/FF pairs 110

2.6 Building Blocks

The research on common building blocks used within the presented lattice-based

encryption and signature schemes are examined. The reason is because these

building blocks are essential for the understanding of the performance of LBC.

For example, an improvement in one of these components would have a knock-on

effect into improving lattice-based encryption or digital signatures.

2.6.1 Polynomial Multiplication

Comparable to point multiplication for ECC and exponentiation for RSA, matrix-

vector multiplication is the basic operation in standard LBC and polynomial

multiplication is the basic operation in ideal LBC. As a result, it has been

polynomial multiplication that has been the subject of various optimisation efforts

within LBC. While addition and subtraction in R are easy to realise with O(n)

2.6 Building Blocks 54

primitive operations in Zq, polynomial multiplication is much more complicated6.

When computing the product c = a · b in R the trick that xn ≡ −1 can be

used for instant reduction mod ⟨xn + 1⟩. This leads to the obvious schoolbook

approach

ab =
n−1∑
i=0

n−1∑
j=0

(−1)⌊
i+j

n ⌋a[i]b[j]xi+j mod n mod q,

which generally requires n2 multiplications and (n− 1)2 additions or subtrac-

tions. Schoolbook multiplication can either be performed row-wise, column-

wise, or using a hybrid approach [Gura et al., 2004]. For row-wise multi-

plication, a multiplicand b[j] is fixed and the row, that is, the inner prod-

ucts c[i+ j mod n] = c[i+ j mod n] + (−1)⌊
i+j

n ⌋a[i] · b[j] mod p for i, j ∈

{0, . . . , n− 1} are computed. Once a row is completed, the next b[j + 1] is fixed.

Another approach is column-wise multiplication, where partial products are used

to sum up columns of c. Thus, for column ℓ it is then necessary to compute

c[ℓ] = ∑n−1
i=0 (−1)1−⌊n+ℓ−i

n ⌋a[i]b[n+ ℓ− i mod n] mod p.

A first attempt to implement GLP on reconfigurable hardware was shown by

Güneysu et al. [2012] where an array of fast schoolbook multipliers were used to

compute ay1 + y2. The idea was that schoolbook multipliers are simple to realise

and they can profit from different operand sizes as a $← R and y $← Rk.

In the case where polynomials are sparse (polynomials with a lot of zero

coefficients like c from GLP or BLISS), or have only many small coefficients

(for example, just −1/0/1 coefficients like s1, z2 of GLP and BLISS), or both,

schoolbook multiplication is an option. Güneysu et al. [2012] adopt column-wise

multiplication to allow immediate rejection of out of bound z coefficients (z1 or

z2 /∈ Rk−32). Exploiting the spareness of polynomials already played a role in
6Note that for encryption and signature schemes the number of polynomial coefficients n is

usually in the range 256 to 1024 (see Table 2.2 and Table 2.3).

2.6 Building Blocks 55

implementations of the NTRU public-key encryption schemes (see [Kamal and

Youssef, 2009a]).

In order to achieve higher speed for polynomial-multiplication, namely quasi-

linear runtime with O(n log n) multiplications in Zq, the Fast Fourier Transform

(FFT) or more specifically the Number Theoretic Transform (NTT) [Nussbaumer,

1980, Winkler, 1996, Blahut, 2010a] can be used to implement the negative wrapped

convolution. The NTT is defined in a finite field or ring for a given primitive

nth root of unity ω and exists if n is a power of two and q is a prime satisfying

q ≡ 1 mod 2n7. The generic forward NTTω(a) of a sequence {a[0], . . . , a[n− 1]}

to {A[0], . . . ,A[n − 1]} with elements in Zq and length n is defined as A[i] =∑n−1
j=0 a[j]ωij mod q, for i ∈ {0, 1, . . . , n− 1}, with the inverse NTT−1

ω (A) using

ω−1 instead of ω [Winkler, 1996]. Thus the reduction by xn +1 is basically free and

it is possible to work with a transform length equal to the number of polynomial

coefficients. The NTT itself can be implemented using the common Cooley–Tukey

radix-2 decimation-in-time approach [Cormen et al., 2009, Blahut, 2010a] where

the main component is the butterfly structure computing a′ = a + ωl · b mod q

and b′ = a−ωl · b mod q for l ∈ [0, n/2− 1]. Naturally, the NTT has been studied

before it has been applied to lattice-based cryptography with early works like

McClellan [1976]. A recent example is by Emeliyanenko [2009] where the author

provides an implementation of polynomial multiplication on graphics hardware

(GPUs).

The first work [Göttert et al., 2012] proposing a polynomial multiplier specifi-

cally targeting lattice-based cryptography used the multiplier to implement an

ideal lattice-based encryption scheme [Lyubashevsky et al., 2013a]. They com-

pute every stage of the NTT in parallel and thus achieve high throughput, but

as a consequence their design requires a large amount of device resources. An
7The NTT can also be defined for composite moduli, but only prime moduli are considered

in this case.

2.6 Building Blocks 56

Table 2.7 Post-place and route results of NTT multiplication components used
within lattice-based cryptography, where possible8, for dimension sizes n = 256
and 512. Results are by Pöppelmann and Güneysu [2012] (PG) and [Roy et al.,
2013a] (RVMCV). The results are not provided by [Aysu et al., 2013] (APS), but
are reported in a comparative work by Du and Bai [2016] (DB). Results by Du and
Bai [2016] do not provide the modulus used, but it is assumed to be q = 65537.

Mult. Type (n, q) Device LUT/FF/SLICE BRAM/DSP MHz Cycles Ops/s
NTT-PG (256,65537) S6LX100 1438/1123/520 3/1 209 4774 43778
NTT-PG (256,1049089) S6LX100 1637/1507/640 7/4 218 4806 45359
NTT-PG (512,65537) S6LX100 1585/1205/615 4/1 196 10014 19572
NTT-PG (512,5941249) S6LX100 3228/2263/1145 7/4 193 10174 18969
NTT-RVMCV (256,1049089) S6LX100 −/− /297 1/− 37 4683 787
NTT-BLISS (512,12289) S6LX25 2557/2707/835 5/1 145 9307 15579

NTT-APS (256,65537) S6LX100 528/463/208 1/2 185 > 5888 < 31419
NTT-APS (256,65537) S6LX100 608/527/247 1/3 230 > 5888 < 39062
NTT-APS (512,65537) S6LX100 490/532/211 2/2 184 > 12800 < 14375
NTT-APS (512,65537) S6LX100 632/535/256 2/3 224 > 12800 < 17500
NTT-DB (256,65537) S6LX100 533/538/214 2/1 233 4066 57304
NTT-DB (512,65537) S6LX100 562/562/239 4/1 196 10014 19572

iterative approach to polynomial multiplication was proposed by Pöppelmann and

Güneysu [2012] with the goal of achieving a reasonable area consumption and

still high speed. Reasons for better area utilisation compared to the research by

Göttert et al. [2012] are that multiplication in Zq is performed using an embedded

multiplier (via a DSP) and block memory (BRAM) to store polynomials.

Pöppelmann and Güneysu [2013] use the multiplier of Pöppelmann and

Güneysu [2012] as a basis for a microcode engine/reconfigurable processor which

also supports addition, subtraction, and random sampling of polynomials and

allows the programmer fine-grained access to instructions realising the NTT; like

NTT() realising the forward NTT, INTT() for the backward NTT, and PW_MUL()

for point-wise multiplication. Improvements to the stand-alone polynomial mul-

tiplier design of Pöppelmann and Güneysu [2012] were proposed by Aysu et al.

[2013] with similar performance, but a reduction of up to 67% of occupied slices

and 80% of used BRAMs. This was achieved by better memory organisation and
8Separate multiplier results are not available for the research by Roy et al. [2014b], Du et al.

[2016], Göttert et al. [2012], or Güneysu et al. [2012] (GLP)

2.6 Building Blocks 57

concatenated storage of multiple coefficients in one memory address. The required

powers of the twiddle factors, ω and ψ, were generated on-the-fly in an efficient

manner and the design can be configured to use multiple dedicated multipliers

(DSP). A parallel FFT multiplier (n = 64 and q = 257) targeting the lattice-based

hash function by Lyubashevsky et al. [2008] (SWIFFT) was provided by Györfi

et al. [2013] but no larger parameter sets, relevant for signature schemes, were

evaluated. A microcode engine with a similar instruction set used by Pöppelmann

and Güneysu [2013] and further improved multiplier was introduced by Roy et al.

[2013a] to realise lattice-based encryption. The address generation of the NTT

algorithm was rearranged and thus repeated multiplications to generate twiddle

factors were eliminated and pre-computation like the multiplication with powers

of ψ were avoided. Moreover, more efficient memory usage further reduced the

amount of required BRAMs. Thus, this design9, shown in Table 2.7, currently

represents the state-of-the-art for polynomial multiplication for ideal lattice-based

cryptography.

An optimisation of a NTT multiplier for larger parameter sets supporting

somewhat homomorphic cryptography can be found in work by Chen et al. [2014].

Their design goal is high speed and low latency which is achieved by using two

processing elements (PE), two additional integer modular multipliers and a very

regular constant geometry NTT/FFT algorithm (seen in research by Pease [1968]).

The prime (q) used within the NTT has a significant impact on its hardware

performance. As already stated, for NTT to be considered, the prime must be of

the form q ≡ 1 mod 2n. However, certain primes, such as Fermat [Agarwal and

Burrus, 1974] or Mersenne [Rader, 1972] primes, allow for hardware simplifications;

such as shifting in the butterfly unit (instead of multiplication), no storage

requirements for twiddle factors, and simpler modular reduction [Baktir and

Sunar, 2006, Blahut, 2010b]. This allows for low-area hardware designs, which
9This multiplier was also used in the hardware design for BLISS [Pöppelmann et al., 2014]

2.6 Building Blocks 58

is investigated in the research by Aysu et al. [2013] and Du and Bai [2016], for

the Fermat prime q = 216 + 1 = 65537, with results shown in Table 2.7. Aysu

et al. [2013] improve on previous research [Pöppelmann and Güneysu, 2012] by

simplifying the memory usage, which is achieved by concatenating the coefficients

of both polynomials (which have small sizes set as log2(q) ≈ 16), which is achieved

since the max width for 512 coefficients is 36-bits [Xilinx, 2011]. Aysu et al.

[2013] also reduce hardware usage by computing square roots and twiddle factors

on-the-fly. Du and Bai [2016] further these designs by increasing the throughput

via optimising the bit-reverse operation of forward and backward NTT.

Targeting desktop CPUs, Güneysu et al. [2013] provide an optimised software

implementation of the GLP signature scheme and also implement the NTT. The

implementation is optimised for Intel’s Sandy Bridge and Ivy Bridge in particular

and targets the Advanced Vector Extensions (AVX) providing support for Single

Instruction, Multiple Data (SIMD) operations. The C-implementation features

storing of parameters in NTT representation, lazy reduction and representation of

512-coefficient polynomials as a 512 double-precision array of floating-point values.

By utilising the AVX instruction set, that implementation can perform up to 4

multiplications and 4 additions of coefficients in each cycle from which also the NTT

profits. Works such as those by Oder et al. [2014] and Boorghany and Jalili [2014a]

also use the NTT as a building block but do not provide specific optimisations

besides pre-computation and optimisation in assembly. Some optimisations of

the implementation of the NTT on the Cortex-M4F microcontroller were recently

proposed by Clercq et al. [2014] which mainly address parallelization, reduction

of load and stores, as well as rearranging of the NTT algorithm as proposed by

Roy et al. [2013a].

For dimensions n ∈ {256, 512, 1024} and prime q = 12289, Longa and Naehrig

[2016] investigate the software performance of the NTT. These parameters are

chosen because they can be applied to the BLISS signature scheme and the

2.6 Building Blocks 59

key-exchange proposal by Alkim et al. [2016]. The main contribution of the

research by Longa and Naehrig [2016] is an ad-hoc modular reduction technique

for the prime q = 12289, which minimises the use of multiplications. Results are

provided for C and AVX2 implementations for key-exchange, which reports a

speed-up of 1.49x in C and 1.13x faster for AVX2, in comparison to Alkim et al.

[2016]

2.6.2 Discrete Gaussian Sampling

Sampling from the one dimensional discrete Gaussian distribution DZ,σ is an

important building block for all LBC, but also a source of inefficiency in concrete

implementations and thus the reason why GLP relies on uniform noise. The

distribution Dσ is defined such that a value x ∈ Z is sampled from Dσ with

the probability ρσ(x)/ρσ(Z) where ρσ(x) = exp (−x2

2σ2) and ρσ(Z) = ∑∞
k=−∞ ρσ(k).

Conceptually, the simplest algorithm to sample from a Gaussian distribution is

rejection sampling. One chooses a uniformly random u ∈ {−τσ, . . . , τσ} (in this

case τ is denoted as a tail-cut) and accepts with a probability proportional to

exp(−x2/2σ2). However, a straightforward implementation would require the

costly computation of the exp(·) function with high precision λ ≈ 128-bits, a large

number of random bits, and still result in ≈ 10 trials per sample. Research by

Weiden et al. [2013] shows results in software, with some optimisations in the

research by Ducas and Nguyen [2012a].

However, the approach can be optimised in order to reduce the amount of

rejections. In the scheme by Ducas et al. [2013], the authors also make use of

Bernoulli distributed variables. A Bernoulli distributed variable Bc outputs one

with probability c, and zero otherwise. Sampling from this distribution is easy by

evaluating if y < c for a uniformly random y ∈ [0, 1) and pre-computed c. The

general idea of the proposed sampler is to reduce the probability of rejections by

2.6 Building Blocks 60

sampling first from an intermediate and easily sampleable distribution, called the

binary Gaussian distribution, and then from the target distribution. The rejection

rate is thus decreased to ≈ 1.47 (compared to 10 for classical rejection sampling)

and no computations of the exponentiation function exp(·) or large pre-computed

tables are necessary. The required table is small and just grows logarithmically. It

has been used in the hardware design of Pöppelmann and Güneysu [2014] for the

small standard deviation necessary for lattice-based public-key encryption. The

sampler is also used in the BLISS hardware design by Pöppelmann et al. [2014]

and the BLISS microcontroller implementation by Oder et al. [2014].

Another interesting approach to reduce the performance impact of rejections

is the discrete Ziggurat [Buchmann et al., 2013]. The algorithm requires the

computation of m same-area rectangles with the left corners on the y-axis and the

right corners on the graph of the probability distribution function. The entire area

under the graph is then covered by rectangles and a rectangle Ri can efficiently

be stored by just storing the coordinates (xi, yi) of the lower right corner. To

sample a value, a rectangle Ri is first sampled uniformly at random. The next

step is to uniformly choose a value x within the sampled rectangle. If this x value

is smaller or equal to the x coordinate of the previous rectangle, x is accepted,

because all points (xj, yj) ∈ Ri with xj ≤ xi−1 definitively lie within the area

covered by the graph. Otherwise, one has to sample a value y and compute the

exp(·) function to determine whether a value gets rejected or accepted [Oder

et al., 2014]. The biggest disadvantage of the Ziggurat algorithm seems to be

the necessity to perform rejection sampling (although infrequently). However,

Buchmann et al. [2013] show that the performance in software is good compared to

other algorithms and also on microcontrollers [Oder et al., 2014] the performance

impact of rejections is acceptable. As of yet, there are no published results for

hardware implementations.

2.6 Building Blocks 61

Rejections can be avoided completely by using table based samplers. One

option is the Knuth-Yao algorithm [Dwarakanath and Galbraith, 2014] which

constructs a binary tree from the probability matrix and then a random walk

is used to sample an element. The probability matrix consists of the binary

expansion of the probabilities of all x ∈ [0, τσ] ignoring leading zero digits. The

matrix determines a rooted binary tree with internal nodes that always have

two successors, as well as terminal leaves. The leaves are labelled with the value

that is returned if this leaf is reached during the random walk through the tree.

The number of leaves at level n is equal to the number of 1s in column n of the

probability matrix (starting with column 0). The row in which a 1 appears is

used as a label for one of the leaves. All remaining nodes become internal nodes

with two successors that get labelled the same way. An implementation of the

Knuth-Yao algorithm on reconfigurable hardware for small standard deviations is

given by Roy et al. [2013b] (see [Roy et al., 2014a] for an extended version) and

for microcontrollers by Oder et al. [2014] and Clercq et al. [2014].

Another rejection-less method to sample from a Gaussian distribution is the

cumulative distribution table (CDT) by Peikert [2010]. For this method, a table

of cumulative probabilities pz = Pr(x ⩽ z : x ← Dσ) are computed for integers

z ∈ [−τσ, . . . , τσ] with a precision of λ bits. For a uniformly random value x

chosen from the interval [0, 1), the integer y ∈ Z is then returned for which it

holds that pz−1 ≤ x < pz. The comparisons can be performed efficiently without

using floating point numbers. The CDT approach is compared to other software

samplers by Buchmann et al. [2013] and is also used in the software implementation

of BLISS [Ducas et al., 2013]. The performance of the sampler and the whole

BLISS scheme is very good and supported by optimisations, like the usage of a

set of guide tables to narrow the search radius of the binary search to find the x

for which it holds that pz−1 ≤ x < pz. The disadvantage of the CDT approach

is clearly large tables which are acceptable in software, but too expensive for a

2.7 Side-Channel Analysis 62

hardware implementation. This problem is addressed by Pöppelmann et al. [2014],

where an optimised floating point representation and Kullback-Leibler divergence

is used to further reduce the table size. The most significant improvement is an

application of the Gaussian convolution lemma which states that, under some

smoothness condition for x1, x2 ← DZ,σ′ , the value x = x1 + k2x2 is distributed

according to D√
σ′2+kσ′2 . Thus the size of the pre-computed table is massively

reduced, as instead of a sampler for σ ≈ 215, two samples from σ′ ≈ 19.3 are

needed for k = 11. Also, the impact on speed is not too high, as the guide

tables further reduce the number of required comparisons due to the smaller σ′.

Compared with an implementation of the Bernoulli sampling, the CDT requires

roughly half of the device resources for comparable throughput. It should further

be noted that the usage of the convolution lemma is not restricted to the CDT

sampler. The evaluation of the impact of the convolution for others samplers is

currently not available, but is investigated in Chapter 3. The performance of the

CDT sampler, as well as the Bernoulli sampler, are investigated by Boorghany

et al. [2015] and Boorghany and Jalili [2014a] in implementations of GLP and

BLISS as identification protocols on constrained devices.

2.7 Side-Channel Analysis

Although side-channel analysis (SCA) is not the main focus of this thesis, it is

one of the motivations, and hence contributions, of the research in Chapter 3.

Therefore, SCA will now be introduced.

A number of side-channel attacks are feasible for an implementation of a

cryptographic algorithm. For a cryptographic hardware and software module, it

is often useful to carry out a systematic review of the attacks vectors which are

exposed to a potential adversary. These attack vectors are described by Anderson

et al. [2006], and are divided into the following classes.

2.7 Side-Channel Analysis 63

2.7.1 Invasive Attacks

An invasive attack involves de-packaging, which gains direct access to the internal

components of a cryptographic module or device. A typical example of this is

where an attacker may remove the passivation layer for microprobing, with a

needle placed on a data bus the attacker is able to see the data transfer during

a cryptographic operation. To counteract this, tamper resistant or responsive

mechanisms are usually implemented in hardware. An example of this, for some

cryptographic modules of higher security, is to zero all memories when tampering

is detected.

2.7.2 Semi-invasive Attacks

The semi-invasive attack, developed first by Skorobogatov and Anderson [2002],

involves access to the device but without interfering with the passivation layer

or any electrical contact other than with the authorised surface. An example of

this is in a fault attack [Skorobogatov and Anderson, 2002], where the attacker

can use a laser beam to ionise a device, which can change some of the device’s

memories and therefore change its output.

2.7.3 Non-Invasive Attacks

A non-invasive attack follows close observation or manipulation of the operations

of the device. The attack only uses information available externally, such as

outputs which can sometimes leak information. A typical example of this is timing

analysis [Kocher, 1996], which observes the time taken by the device to execute its

operations, which can then be correlated to a particular operation and to secret

information. Such an attack is totally undetectable, and is usually lower in cost

compared to invasive and semi-invasive attacks. A susceptible device to this type

2.8 A Discrete Gaussian Testing Suite 64

of attack is a smart card, where timing analysis can be used at a low cost, even at

a large scale, to find secret information.

2.8 A Discrete Gaussian Testing Suite

This section describes GLITCH, a discrete Gaussian sampler testing suite for LBC.

An incorrectly operating sampler, for example due to hardware or software errors,

has the potential to leak secret-key information and could thus be a potential attack

vector for an adversary. Moreover, statistical test suites are already common for use

in pseudo-random number generators (PRNGs), and as lattice-based cryptography

becomes more prevalent, it is important to develop a method to test the correctness

and randomness for discrete Gaussian sampler designs. Additionally, due to the

theoretical requirements for the discrete Gaussian distribution within lattice-

based cryptography, certain statistical tests for distribution correctness become

unsuitable, therefore a number of tests are surveyed. The final GLITCH test

suite provides 11 adaptable statistical analysis tests that assess the exactness of

a discrete Gaussian sampler, and which can be used to verify any software or

hardware sampler design.

For LBC, there has yet been a proposal for testing the outputs of discrete

Gaussian samplers, that is, if the samplers are actually producing the distribution

required for specific values for (σ, τ, λ). The specifications for the discrete Gaussian

sampling within lattice-based cryptography are very precise. The statistical dis-

tance between the theoretical discrete Gaussian distribution and the one observed

in practice should be overwhelmingly small [Peikert, 2010], usually at least as

small as 2−λ for λ ∈ {64, . . . , 128}. Providing guidelines to test implementations

of discrete Gaussian samplers is therefore necessary for real-world applications

in order to prevent attacks exploiting biased samplers, which can even occur via

operational errors or bugs within sampler software or hardware designs. Thus, an

2.8 A Discrete Gaussian Testing Suite 65

erroneously operating sampler could affect the target security level of the overall

lattice-based cryptoscheme.

Additionally, the test suite is applicable for lattice-based cryptoschemes whose

outputs are also distributed via the discrete Gaussian distribution, such as lattice-

based encryption schemes [Lindner and Peikert, 2011, Lyubashevsky et al., 2013a]

and digital signatures [Gentry et al., 2008, Ducas et al., 2013]. Indeed, a deviation

from the target discrete Gaussian distribution for a lattice-based encryption or

signature scheme could lead to a potential attack by an adversary.

2.8.1 Introduction to Statistical Testing in Lattice-Based

Cryptography

Statistical testing is used to estimate the likelihood of a hypothesis given a set

of data. For example, in cryptanalysis, statistical testing is commonly used to

detect non-randomness in data, that is to distinguish the output of a PRNG from

a truly random bitstream or to find the correctly decrypted message. The need for

random and pseudorandom numbers arises in many cryptographic applications. For

example, common cryptosystems employ keys that must be generated in a random

fashion. Many cryptographic protocols also require random or pseudorandom

inputs at various points, for example, for auxiliary quantities used in generating

digital signatures, or for generating challenges in authentication protocols.

Moreover, the inclusion of statistical tests is paramount when implementing

cryptography in practice. For example, to test a PRNG for cryptographically

adequate randomness, the test suites DIEHARD [Marsaglia, 1985, 1993, 1996]

and NIST SP 800-22 Rev. 1a [Bassham III et al., 2010] were made to check for

insecure randomness, that is, to test a PRNG for weaknesses which an adversary

could exploit.

2.8 A Discrete Gaussian Testing Suite 66

To exploit or attack a PRNG, an algorithm could determine the deviation of

its output from that of a truly uniformly random deviation. This is especially

important for the discrete Gaussian distribution within lattice-based cryptography,

since these values hide secret information. Normality tests can be used to determine

if, and how well, a data set follows the required normally structured distribution.

More specifically, statistical hypothesis testing is used, which under the null

hypothesis (H0), states that the data is normally distributed. The alternative

hypothesis (Ha), states that the data is not normally distributed. All of the

methods proposed for testing the correctness of a discrete Gaussian sampler design

only require an input of histogram values output from the sampler.

For the test suite, two normality tests are adopted, each using the same

statistics of the discrete Gaussian samples, by producing two important (and

somewhat distinct) results. Both also follow the same hypotheses; the null

hypothesis that the sample data is normally distributed, and the alternative

hypothesis that they are not normally distributed.

The first test considered is the Jarque-Bera [Jarque and Bera, 1980, Bera

and Jarque, 1981, Jarque and Bera, 1987] goodness-of-fit test, which takes the

skewness and kurtosis from the sample data, and matches it with the discrete

Gaussian distribution. It tests the shape of the sampled distribution, rather than

dealing with expected values, which makes the test significantly simpler than,

say, a χ2 test. Interestingly, if the sample data is normally distributed, the test

statistic from the Jarque-Bera test asymptotically follows a χ2 distribution with

two degrees of freedom, which is then used in the hypothesis test.

The second test is the D’Agostino-Pearson K2 omnibus test [D’Agostino et al.,

1990], and is another goodness-of-fit test using the sample skewness and kurtosis.

This test however is an omnibus test, which tests whether the explained deviation

in the sample data is significantly greater than the overall unexplained deviation.

The test also has the same asymptotic property as the Jarque-Bera test.

2.8 A Discrete Gaussian Testing Suite 67

D’Agostino et al. [1990] analyse the asymptotic performances of more commonly

used normality tests; those being the χ2 test, Kolmogorov test [Kolmogorov, 1956],

and the Shapiro-Wilk W-test [Shapiro and Wilk, 1965]. These are important

results, since the sample sizes required are far beyond those used in typical

applications, in say, medicine or econometrics. Additionally it is recommended

not to use the χ2 test and Kolmogorov test, due to their poor power10 properties.

That is, for a large sample size, the probability of making a Type II error (that is,

incorrectly retaining a false null hypothesis) significantly increases. Furthermore,

for sample sizes N > 50, D’Agostino et al. state the Shapiro-Wilk W-test is

no longer available, and even with the test extended (N ≤ 2000) [Royston,

1982], it still falls below the required sample size (for example, for parameters

by Pöppelmann et al. [2014], #bins ∈ {2874, 5748, 7464, 8874}). The final major

test for normality is the Anderson-Darling test [Anderson and Darling, 1952,

1954]. However, the D’Agostino-Pearson K2 omnibus test is preferred since the

Anderson-Darling test is biased towards the tails of the distribution [Razali et al.,

2011].

The overall final tests are graphical, the first simply plot the observed histogram

data (in blue) versus that which is expected (in red). The second graphic is a

quantile-quantile (QQ) plot. This test illustrates how strongly the histogram data

follows a discrete Gaussian distribution, providing a QQ-plot and coefficient of

determination (R2). The QQ-plot is supplementary to the numerical assessment of

normality and is a graphical method for comparing two probability distributions.

In this case, these two probability distributions are the observed and expected

quantiles of the discrete Gaussian distribution. This test is essentially the same

as a probability-probability (PP) plot, wherein a data set is plotted against its

target theoretical distribution. However, QQ-plots have the ability to arbitrarily
10The power of an hypothesis test is the probability that the test rejects the null hypothesis

when the alternative hypothesis is true.

2.8 A Discrete Gaussian Testing Suite 68

Table 2.8 Details of the GLITCH software test suite.

Test No. Test Description Test Formula

Test 1

Sample Mean (x̄) x̄ = (∑N
i=1 xihi)/N

Standard Error of x̄ SEx̄ = s/
√
N

Confidence Interval of x̄ x̄± tα/2SEx̄

Accept Null Hypothesis? Accept if |µ| ∈ {0, . . . , x̄+ tα/2SEx̄}

Test 2

Sample Standard Deviation (s) s =
√

(∑N
i=1(xi − µ̄1)2hi)/N

Standard Error of s SEs = s/
√

2(N − 1)
Confidence Interval of s s± tα/2SEs

Accept Null Hypothesis? Accept if |σ| ∈ {0, . . . , s+ tα/2SEs}
Test 3 Sample Tail-Cut (τ̄) τ̄ = max(xi)/s

Test 4 Sample Skewness (ω) ω = m3

√
N(N − 1)/(N − 2)

Standard Error of ω SEω =
√

6N(N−1)
(N−2)(N+1)(N+3)

Test 5 Sample Excess Kurtosis (κ) κ = (m4/s
4)− 3

Standard Error of κ SEκ = 2SEω

√
N2−1

(N−3)(N+5)
Test 6 Sample Hyperskewness ω∗ = m5/s

5

Test 7 Sample Excess Hyperkurtosis κ∗ = m6/s
6

Test 8 Jarque-Bera Test For Normality JB = (N/6)(ω2 + ((κ− 3)2)/4)
Accept Null Hypothesis? Accept if JB < χ2

α

Test 9 D’Agostino-Pearson Omnibus Test K2 = Z1(ω)2 + Z2(κ)2

Accept Null Hypothesis? Accept if K2 < χ2
α

Test 10 Histogram Plot -
Test 11 Coefficient of Determination R2 = 1− (∑

i=1 e
2
i /

∑
i=1(yi − ŷ)2)

choose the precision (to equal that of λ, say 128-bits) as well as being easier to

interpret in the case of large sample sizes, hence its inclusion over PP-plots.

The R2 value complements this plot, analysing how well the linear reference

line approximates the expected data points. The output R2 ∈ [0, 1] is a measure

of the proportion of total variance of the outcomes, which is explained by the

model. Therefore, the higher the R2 value, the better the model fits the data.

2.8.2 The GLITCH Test Suite

The test suite is designed so that it takes, as input, a histogram of discrete

Gaussian samples. This is seen as advantageous over an input of listed samples,

as calculations are significantly simplified as well as offering a decrease in storage.

2.8 A Discrete Gaussian Testing Suite 69

The tests were specifically chosen so that each parameter in the discrete Gaussian

sampling stage is tested. The main parameters under test are the mean and

standard deviation of the discrete Gaussian distribution (µ, σ), with additional

tests added to check the tail-cut (τ), and the shape of the distribution via the

statistics skewness and kurtosis. Additional tests are included to check the

normality of the distribution. Precision is also adaptable and set to 128-bits as

per most lattice-based cryptoschemes.

The GLITCH test suite is provided in Python and is made publicly available

online11. Additionally, discrete Gaussian data sets are provided. Concise details

for GLITCH are given in Table 2.8.

Tests (1-3): Testing for Normality

The first set of tests are to approximate the main statistical parameters µ and σ,

producing values for sample mean (x̄) and sample standard deviation (s). This

is done by using adapted formulas for the first (m1) and second (m2) moments,

taking as input a histogram of values (xi, hi), where m1 = x̄ = (∑N
i=1 xihi)/N

corresponding to the sample mean, and m2 = s2 = (∑N
i=1(xi − x̄)2hi)/N corre-

sponding to the sample variance, for a sample size N . The subsequent moments are

then mk = (∑N
i=1(xi − x̄)khi/N)/σk, using sample standard deviation s = √m2.

Next, the standard error (SE) is calculated for the sampling distribution. This

statistic measures the reliability of a given sample’s descriptive statistics with

respect to the population’s target values, that is, the mean and standard deviation.

Additionally, the standard error is used in measuring the confidence in the sample

mean and sample standard deviation. For this, a two-tail t-test is constructed,

given the null hypothesis µ = 0 (similarly for σ), with the alternate hypothesis

that they are not equal. So, if the null hypothesis is accepted, it is concluded that

a 100(1− α)% confidence interval (C.I.) is x̄± ϵx̄ and s± ϵs, where ϵx̄ = tα/2SEx̄

11GLITCH software test suite available at https://github.com/jameshoweee/glitch

https://github.com/jameshoweee/glitch

2.8 A Discrete Gaussian Testing Suite 70

and ϵs = tα/2SEs. Since the aim of these tests is for the highest confidence (99.9%),

tα/2 = 3.29.

Tests (4-7): Testing the Distribution’s Shape

The next set of tests deal with statistical descriptors of the shape of the probability

distribution.

The first descriptor is the skewness; which is a measure of symmetry of the

probability distribution and is adapted from the third moment. The skewness for

a normally shaped distribution, or any symmetric distribution, is zero. Moreover,

a negative skewness implies the left-tail is long, relative to the right-tail, and a

positive skewness implies a long right-tail, relative to the left-tail. The population

skewness is simply m3/s
3, however the sample skewness must be adapted to

ω = m3

√
N(N − 1)/N − 2 to account for bias [Joanes and Gill, 1998]. Also SEω

is calculated, to show the relationship between the expected skewness and ω.

The forth moment is kurtosis; and describes the peakedness of a distribution.

For a normally shaped distribution, the target sampled kurtosis is three, and is

calculated as m4/s
4. More commonly, the sampled excess kurtosis is used and is

defined as κ = (m4/s
4)− 3. A positive kurtosis indicates a peaked distribution,

similarly a negative kurtosis indicates a flat distribution. It can also be seen, given

an increase in kurtosis, that probability mass has moved from the shoulders of the

distribution, to its centre and tails [Balanda and MacGillivray, 1988]. Similarly,

SEκ is calculated to show the relationship between the expected excess kurtosis

and κ.

An appropriate test for these statistical descriptors would be a z-test, where

confidence intervals could also be calculated for some confidence level α. However,

under a null hypothesis of normality, z-tests tend to be easily rejected for larger

samples (N > 300) taken from a not substantially different normal distribution

[Kim, 2013].

2.8 A Discrete Gaussian Testing Suite 71

Higher-order moments, specifically the fifth and sixth, are used in the last

two tests on the distribution’s shape. The first of these tests hyper-skewness

ω∗ = m5/s
5, which still measures symmetry but is more sensitive to extreme

values [Hinton, 2014, p.97]. Likewise, the second of these tests is for excess

hyper-kurtosis κ∗ = m6/s
6, which tests for peakedness with greater sensitivity

towards more-than-expected weight in the tails [Hinton, 2014, p.100].

Tests (8-9): Normality Testing

These tests calculate the test statistic and p-value for the two normality tests

described in Section 2.8, these are the Jarque-Bera [Jarque and Bera, 1987] and

D’Agostino-Pearson [D’Agostino et al., 1990] omnibus tests. The Jarque-Bera

test statistic is calculated as JB = (N/6)(ω2 + ((κ− 3)2/4)), where its p-value is

taken from a χ2 distribution with two degrees of freedom. The null hypothesis (of

normality) is rejected if the test statistic is greater than the χ2 p-value.

The D’Agostino-Pearson omnibus test is based on transformations of the

sample skewness (Z1(ω)) and sample kurtosis (Z2(κ)), which are combined to

produce an omnibus test. This statistic detects deviations from normality due to

either skewness or kurtosis and is defined as K2 = Z1(ω)2 + Z2(κ)2.

Tests (10-11): Illustrating Normality

D’Agostino et al. [1990] recommend, as well as test statistics for normality,

graphical representations of normality are also provided. Hence, the final two

tests are illustrative tests on the discrete Gaussian samples. The first graphic,

shown in Figures 2.2a and 2.2c, plots the histogram of discrete Gaussian observed

values (in blue) alongside the expected values (in red).

The second graphic is a quantile-quantile (QQ) plot, shown in Figures 2.2b

and 2.2d. For this test, the calculated z-scores are plotted against the expected

z-scores, where if the data is normally distributed, the result will be a straight

2.8 A Discrete Gaussian Testing Suite 72

(a) Histogram of observed (blue) dis-
crete Gaussian samples versus expected
(red). The observed data matches the
expected values.

(b) QQ-plot of the observed discrete
Gaussian samples with the coefficient of
determination (R2) value. Both red and
blue lines overlap meaning the observed
data matches the expected values.

(c) Histogram of observed (blue) dis-
crete Gaussian samples versus expected
(red). The observed data does not
match the expected values.

(d) QQ-plot of the observed discrete
Gaussian samples with the coefficient
of determination (R2) value. Red and
blue lines do not overlap meaning the
observed data does not match the ex-
pected values.

Fig. 2.2 The graphical outputs of GLITCH tests 10 and 11.

2.9 Conclusion 73

diagonal line [Field, 2009, p.145-148]. A 45-degree reference line is plotted, which

will overlap with the QQ-plot if the distribution follows the required distribution.

The coefficient of determination (R2) value is calculated asR2 = 1−(SSres/SStot),

where SSres = ∑
i(yi − fi)2 is the residual sum of squares and SStot = ∑

i(yi − x̄)2

is the total sum of squares, yi is the observed data set and fi is the expected

values.

2.8.3 Results

Example results are provided in Appendix A. The results used are from a Bernoulli

sampler. The first data set passes all tests, as shown in Table A.1. A second

data set, used in Table A.2, is generated with an incorrect standard deviation and

fails test 2, showing that GLITCH detects errors in discrete Gaussian samplers.

Additionally, this failure is illustrated in the histogram plot and QQ-plot seen in

Table A.2, with expected and observed values not matching. Data sets provided

are of size 236. In general, the sample size for GLITCH should be large enough so

that extreme values in the discrete Gaussian tails are likely to be filled.

The tests chosen are powerful and operate well on large sample sizes, with

each analysing differing aspects within the discrete Gaussian distribution. Failure

in any of these tests indicates a deviation from the target distribution, which

is therefore evidence of an incorrectly performing discrete Gaussian sampler (or

lattice-based cryptoscheme).

2.9 Conclusion

In this chapter, an introduction is given into the theory of lattices, lattice-based

cryptography, and lattice-based PKE and DSSs, to provide context to the research

presented in this thesis.

2.9 Conclusion 74

With respect to encryption schemes, there exists one predominately used

scheme for ideal lattices (LPR by Lyubashevsky et al. [2013a]) and standard

lattices (LP by Lindner and Peikert [2011]), and due to its better performance

the ring-variant LPR is the most preferred. The hardware performance of LPR

has been well-studied, with results (seen in Table 2.1) for balanced and low-area

hardware designs. However, there could be more improvements on CPU-based

implementations (with the only previous work by Göttert et al. [2012]) as well as

the hardware performance of LP since there is no previous research in this area.

With respect to the digital signature schemes, the first lattice-based DSSs

were GGH/NTRUSign, however these are known not to be secure hence they

are excluded from formal description. The next class of schemes, hash-and-sign

signatures (such as GPV signatures), once held promise for practical instantiations

but have recently departed from inclusion in future research. This is mainly

due to the signatures showing almost complete infeasibility for applications on

constrained devices, a feature that is clearly essential given the diversity and scope

of future technology.

With the addition of more favourable results shown by Fiat-Shamir signatures,

it is no surprise that this has significantly shifted the research focus, giving

predominance to the more modernised schemes in this area, such as BLISS. Due

to the very exciting results shown in recent instantiations of BLISS on FPGAs by

Pöppelmann et al. [2014] (≈ 8000 signatures per second) and on microcontrollers

by Oder et al. [2014] (28 signatures per second), in both instances outperforming

RSA and ECC for comparable security levels, lattice-based digital signature

schemes are now at a stage to be considered for real-world applications. However,

no results currently exist for other ideal Fiat-Shamir lattice-based signatures which

could compare with BLISS in hardware at 128-bit security level.

Currently there have been no hardware implementations of Ring-TESLA.

Despite the larger arithmetic sizes, the scheme is fairly attractive in comparison

2.9 Conclusion 75

to GLP and BLISS, due to only requiring uniform random noise - therefore no

need for a discrete Gaussian sampler - and signatures being uniformly distributed

- meaning Huffman coding for shorter signatures is not required, which is used

in BLISS, with both consuming significant hardware resources. Although, due

to Ring-TESLA requiring two full polynomial multiplications, with GLP and

BLISS only computing one, it is expected to have a higher latency. This is

investigated in Chapter 5.

The research on statistical testing for discrete Gaussian outputs reapplies well

established statistical testing techniques to LBC, taking into consideration the

stringent requirements within lattices. This was completed by conducting a full

survey on a number of different testing techniques. The first number of tests are

for calculating the main discrete Gaussian parameters (µ, σ, τ) from the observed

data, giving standard error and confidence intervals of each with the highest level

of confidence (99.9%). The next set of tests verifies the shape of the distribution,

that is whether there is any bias towards the positive or negative side of the

distribution (that is, the x-axis) and whether the distribution has a bias towards

the peak of the distribution (that is, the y-axis). For these tests and for the

following tests on normality, the tests which allow for samples sizes large enough

for lattice constraints were chosen. The last tests illustrate the difference between

the observed distribution and the expected distribution’s shape. Example results

are provided in Appendix A which show results for a correctly and incorrectly

performing sampler; in both cases the test suite deduces this.

From the background research conducted in this chapter, it is clear that the

discrete Gaussian sampler is one of the most important components in practical

LBC and is required within almost all lattice-based cryptoschemes. Considering

current discrete Gaussian samplers are expensive in hardware, time consuming, and

also susceptible to SCA attacks, it is important to design samplers which appease all

of these issues. The next chapter proposes novel and efficient hardware designs for

2.9 Conclusion 76

the major techniques for discrete Gaussian sampling (as discussed in Section 2.6.2).

The chapter also contributes recommendations for which sampling techniques

operate most efficiently for lattice-based encryption and digital signature schemes.

CHAPTER 3

Practical Discrete Gaussian Samplers For

Lattice-Based Cryptography

As mentioned in Chapter 2, the discrete Gaussian component is one of the

most important modules within lattice-based cryptography (LBC). The aim of

this chapter is to improve the performance of the discrete Gaussian sampler

component.

In this chapter, novel hardware designs of discrete Gaussian samplers, that

operate in independent time, are proposed. Discrete Gaussian samplers are a

core building block in most, if not all, lattice-based cryptosystems, and thus

optimised samplers are desirable both for high-speed and low area applications.

This contribution contains the first comprehensive evaluation of discrete Gaussian

samplers in hardware (targeting FPGA devices), proposing novel optimised discrete

Gaussian sampler hardware architectures for the main sampling techniques, which

include independent-time designs for each of the samplers and offering security

against side-channel timing attacks. The proposed designs are compared against

the state-of-the-art and recommendations for the selection of suitable sampling

techniques as per the application and constraints at hand are given. This research

appears in the publications by Khalid et al. [2016] and Howe et al. [2016a]. The

3.1 Introduction 78

main publication for this chapter [Howe et al., 2016a] also includes the first

hardware design of the discrete Ziggurat sampler, however since it is less practical

than the other hardware designs, it has been omitted from this thesis.

3.1 Introduction

As LBC starts to become feasible for deployment in the real world, suitable coun-

termeasures against physical cryptanalysis, including side-channel analysis (SCA),

become a requirement. This is echoed by a recent call by NIST for optimised,

quantum-resistant algorithms resistant to SCA attacks [NIST, 2016]. A core

component to almost all LBC is the discrete Gaussian sampler, which is arguably

the most vulnerable module within modern lattice-based constructions, due to

its inherent structure. If the discrete Gaussian sampler is successfully attacked,

it would render the whole cryptosystem broken. To date, there has been little

research into the SCA-resilience of lattice-based cryptographic implementations

(with the only preface by Roy et al. [2014a] and Reparaz et al. [2015a]).

As described in Chapter 3.2, the discrete Gaussian distribution is preferred

to other probability distributions as it allows for more efficient and more secure

implementations, with smaller output sizes such as ciphertexts or signatures1.

Moreover, the samplers are used to add “noise” onto secret information, that

would otherwise give away secret information in LWE and SIS cryptosystems via

Gaussian elimination. The inherent structure of the distribution, however, is a

potential attack vector for an adversary, making it susceptible to timing analysis

attacks due to its normalised structure.

This chapter investigates and proposes SCA-resilient hardware implementations

of recently proposed practical discrete Gaussian sampling techniques used within
1As opposed to using an alternative distribution as noise, say the uniform distribution.

3.1 Introduction 79

lattice-based encryption and signature schemes2, that is, the Bernoulli sampler

[Ducas et al., 2013], the cumulative distribution table (CDT) sampler [Peikert,

2010], and the Knuth-Yao sampler [Knuth and Yao, 1976]. The major contributions

of this research are as follows:

1. The first comprehensive evaluation of all aforementioned discrete Gaus-

sian samplers, which are a core component of lattice-based encryption and

signature schemes, with mathematical descriptions of all prominent sam-

pling techniques, discussions of their inherent limitations and strengths, as

well as a comparison with previous discrete Gaussian sampler hardware

implementations.

2. Practical hardware FPGA designs of timing-attack resilient discrete Gaussian

samplers are presented, for appropriate practical parameters, for throughput

(operations per second), memory consumption, and resource count. Novel

optimisation strategies are proposed for the hardware architectures of the

sampling techniques, where the results at least compete with, and in many

cases, significantly outperform, previous implementations.

3. The first constant-time Bernoulli sampler is proposed, as well as the first

reported results on a time-independent Knuth-Yao sampler in hardware.

4. Based on the performance results, recommendations are given as to the most

appropriate sampler to use for particular applications.

This chapter begins by reintroducing the discrete Gaussian distribution and

the discrete Gaussian sampling techniques considered in this research. Section

3.2.2 then discusses SCA and timing analysis, as well as the design goals and

objectives of this research. This discussion sets up the proposed research in Section
2With the Binomial sampler used by Alkim et al. [2016] currently only applicable for

key-exchange protocols.

3.2 Discrete Gaussian & Side Channel Analysis Introduction 80

3.3 on the time-independent discrete Gaussian samplers, with the results given in

Section 3.4, recommendations given in Section 3.5, and conclusions in Section 3.6.

3.2 Discrete Gaussian & Side Channel Analysis

Introduction

The rationale for employing discrete Gaussian samplers (as opposed to another

probability distribution) is that they allow more efficient, secure implementations,

with smaller output sizes such as ciphertexts or signatures. Moreover, they are

used to add “noise” onto values that would otherwise give away secret information

in LWE and SIS constructed cryptosystems via Gaussian elimination.

For applications in this thesis, the following assumptions are made: the discrete

Gaussian distribution is considered over the integers, with fixed parameters mean

µ = 0 and standard deviation σ, known in advanced and shown in Table 3.1. Due

to the nature of the discrete Gaussian distribution, that being its infinitely long

tails and infinitely high precision, it is essential to make practical compromises

which do not, at the same time, hinder the integrity of the scheme. The two

parameters needed here are (λ, τ), which represent the sampler’s precision and

tail-cut, respectively. Including the mean and standard deviation, the parameters

make a tuple (µ, σ, λ, τ) of discrete Gaussian parameters, which, in more detail,

operate as follows:

• The mean (µ) is the centre of a normalised distribution. Almost always,

within lattice-based cryptography, the mean is set to µ = 0.

• The standard deviation (σ) is conventional when using the Gaussian distri-

bution in general, and it controls the distribution’s shape by quantifying the

dispersion of data from the mean. Variance (s) can sometimes be used to

describe the discrete Gaussian’s shape, which is defined as s =
√

2πσ. In

3.2 Discrete Gaussian & Side Channel Analysis Introduction 81

general, the standard deviation’s value depends on the modulus used within

the LWE or SIS scheme. Where, for instance in LWE, should σ be too small

the hardness assumption may become easier than expected, and if σ is too

large the problem may not be as well-defined as required.

• The precision parameter (λ) governs the level of precision required for

a specific implementation, exacting the statistical distance between the

“perfect” theoretical discrete Gaussian distribution and the “practical” to be

no greater than 2−λ, which corresponds directly to the security level of the

scheme. However, Saarinen [2015, 2017] recommends that for a scheme with

target security level λ-bit, precision need be no greater than λ/2, arguing

that there exists no algorithm that can distinguish between a “perfect”

sampler and one with statistical distance 2−λ/2.

• The tail-cut parameter (τ) administers how much of the less-heavy tails

can be excluded in the practical implementation, for a given security level.

That is, given a target security level of s-bits, the target distance from

“perfect” need be no less than 2−s. Therefore, instead of considering samples

in the range |x| ∈ {0,∞}, they can be considered in the range |x| ∈ {0, στ}.

Applying the aforestated reduction in precision also affects the tail-cut

parameter, which is calculated as τ =
√
λ× 2 ln(2).

A straightforward trick to save on execution time and table space is to only

consider the distribution over Z+, proportional to ρσ(x) for ∀x > 0, where for

x = 0 ρσ(0) must be halved since this will otherwise be counted twice. The entire

distribution over Z can be easily recovered by incorporating a random sign bit at

the end of sampling.

Further reductions in memory are possible by virtue of Peikert’s convolution

lemma [Micciancio and Peikert, 2013], which was adapted by Pöppelmann et al.

3.2 Discrete Gaussian & Side Channel Analysis Introduction 82

[2014] using the Kullback-Leibler divergence. Using the lemma implies a signif-

icantly smaller standard deviation can be used, which therein impacts on the

scheme’s area cost. Referring to Peikert [2010] and Pöppelmann et al. [2014] for the

formal definitions of the smoothing parameter η and Kullback-Leibler divergence

respectively, the adaption in Pöppelmann et al. [2014] states the following,

Lemma 1. Let x1 ← DZ,σ1, x2 ← DkZ,σ2 for some positive real σ1, σ2 and let

σ−2
3 = σ−2

1 + σ−2
2 and σ2 = σ2

1 + σ2
2. For any ϵ ∈ (0, 1

2) if σ1 ≥ ηϵ(Z)/
√

2π and

σ3 ≥ ηϵ(kZ)/
√

2π, then (“perfect”) distribution P of x1 + x2 verifies

DKL(P||DZ,σ) ≤ 2
(

1−
(1 + ϵ

1− ϵ

)2)2
≈ 32ϵ2.

Proof. The proof of this lemma is referred to in Pöppelmann et al. [2014].

Utilising Lemma 1 is ideal for minimising the standard deviation σBLISS = 215

in BLISS. The equations in Lemma 1 are satisfied by setting k = 11, which

means σ′ = σ/
√

1 + k2 ≈ 19.47, and by sampling twice x′
1, x

′
2 ← DZ,σ′ a value

x ← DZ,σ can be built as x = x′
1 + kx′

1. The usage of the significantly smaller

σ′, as opposed to σ, means that sizes of precomputed tables within table-based

samplers is reduced to around 11x smaller, with the main drawback being the

requirement of sampling twice.

3.2.1 Sampling Techniques and Previous Work

Conceptually, the simplest algorithm to sample from a Gaussian distribution is

rejection sampling or the acceptance-rejection method (introduced by Von Neu-

mann [1951]). Using rejection sampling it is possible to sample from an arbitrary

target distribution f when also given access to a bounded probability distribu-

tion g. In order to sample from f , a sample from g is accepted with probability

f(x)/(M ·g(x)), where M is some positive real. When it is satisfied that f(x) ≤M

3.2 Discrete Gaussian & Side Channel Analysis Introduction 83

for all x, then the sampler produces the exact distribution f . In order to use

rejection sampling to draw values from the positive half of a discrete Gaussian

distribution, a uniformly random integer x ∈ {0, . . . , τσ} is chosen and then

accepted with a probability proportional to ρσ(x) = exp(−x2/2σ2) (in this case

M = 1). This is achieved by selecting a uniformly random value x, a random

value u chosen from [0, 1) and it is checked whether u < ρσ(x) and thus whether

a random u is under (acceptance) or above the curve (rejection) of the probability

mass function of the Gaussian distribution. Sampling from the full range of the

discrete Gaussian distribution finally involves rejection of an accepted x = 0 with

probability 1
2 and sampling of a sign bit. On average the method requires 2τ/

√
2π

trials until a sample is accepted.

Since this method requires many rejections in order to achieve an accepted

value (an average of ≈ 8 trials) and the costly computation of the exponential

function to high precision, the rejection sampling method is considered inefficient

for practical hardware instantiations.

Parameters (σ, λ, τ)
LP Encryption [Lindner and Peikert, 2011] (3.33, 64,9.42)
BLISS Signatures [Ducas et al., 2013] (215, 64,9.42)

Table 3.1 Secure 128-bit discrete Gaussian parameters.

Bernoulli Sampling

The rejection sampling technique can be optimised in order to reduce the amount

of rejections. This is achieved in the scheme by Ducas et al. [2013] (Algorithm

3.1, 3.2, and 3.3), where the authors make use of Bernoulli distributed variables

Bc, outputting one with probability c ∈ [0, 1], and zero otherwise. Additionally,

the number of rejections are reduced by using a distribution g called binary

Gaussian distribution where x is proportional to ρσbin(x) = 2−x2 with parameter

3.2 Discrete Gaussian & Side Channel Analysis Introduction 84

σbin =
√

1/(2 ln 2) ≈ 0.849 (see Algorithm 3.1) which can simply be constructed

on-the-fly.

Algorithm 3.1 Sampling DZ+,σbin

Ensure: An integer x ∈ Z+ according to D+
σbin

Generate a bit b← B1/2
if b = 0 then return 0
for i = 1 to ∞ do

draw random bits b1 . . . bk for k = 2i− 1
if b1 . . . bk−1 ̸= 0 . . . 0 then restart
if bk = 0 then return i

end for

Algorithm 3.2 Sampling DZ+,kσbin for k ∈ Z
Require: An integer k ∈ Z (σ = kσbin)
Ensure: An integer z ∈ Z+ according to D+

σ

sample x ∈ Z according to D+
σbin

sample y ∈ Z uniformly in {0, . . . , k − 1}
z ← kx+ y
sample b← Bexp(−y(y+2kx)/(2σ2))
if ¬b then restart
return z

Algorithm 3.3 Sampling DZ,kσbin for k ∈ Z

Generate an integer z ← D+
kσbin

if z = 0 restart with probability 1/2
Generate a bit b← B1/2 and return (−1)bz

Using the binary Gaussian, an intermediate distribution k·DZ+,σbin+U({0 . . . k−

1}) is constructed and the correct Gaussian distribution DZ+,kσbin is shaped using

rejection sampling (see Algorithm 3.2), which reduces the number of rejections

to ≈ 1.47 (compared to 8 for classical rejection sampling). In general, during

rejection sampling, a value is accepted with probability f(x)/(M · g(x)) which

usually requires explicit computation of f(x). However, it holds for an integer

x = ∑ℓ−1
i=0 xi2i with xi ∈ {0, 1} that:

3.2 Discrete Gaussian & Side Channel Analysis Introduction 85

Bexp(−x/f) = Bexp(−
∑

i
xi2i/f) = B∏

i
exp(−xi2i/f) =

∧
i s.t. xi=1

Bexp(−2i/f),

meaning the final rejection step is performed independently, by evaluation of

Bernoulli trials, which is efficient given precomputed biases ci for every xi. The

method therefore only requires λ log2(2.4τσ2) bits of storage, and it is shown

in Ducas et al. [2013] that Algorithm 3.2 requires less than 1.47 + 1/k trials.

Algorithm 3.3 then corrects z to fit the final target distribution DZ,kσbin .

One slight caveat to considering the Bernoulli technique is that the standard

deviation must be a multiple of the binary Gaussian standard deviation; that is

σ = kσbin where k = 4 for LP, k = 254 for BLISS, and σbin =
√

1/2 ln 2. Therefore,

the standard deviations seen in Table 3.1 become σLP = 3.39, σ′
BLISS = 19.53, and

σBLISS = 215.73.

Bernoulli sampling has been implemented without using the binary Gaussian

distribution by Pöppelmann and Güneysu [2014] for the small standard deviation

necessary for lattice-based public-key encryption. A complete implementation

of the sampler can be found in the full version of the hardware implementation

of the BLISS signature scheme by Pöppelmann et al. [2014], whose design is

as follows: the binary Gaussian distribution ρσbin({0, 1, . . . , j}) = ∑j
i=0 2−i2 =

1.1001000010000001 . . . is not constructed on-the-fly, instead they use two 64-bit

shift registers to store the expansion precomputed up to a precision of 128 bits,

which outputs an x ∈ Dσbin . Uniformly random values y ∈ {0, 1, . . . , k − 1} are

then sampled which may require rejection sampling (for instance, the probability

of a rejection for k = 254 is 2/256). The pipelined Bernoulli calculation stage

takes a (y, x) tuple as input and computes t = kx and outputs z = t+ y as well

as j = y(y + 2t).

3.2 Discrete Gaussian & Side Channel Analysis Introduction 86

While z is retained in a register, the Bernoulli evaluation module evaluates

the Bernoulli distribution of b ← Bexp(j/2σ2). If and only if b = 1 the value z

is passed to the output, and discarded otherwise. The evaluation of Bexp(x/f)

requires independent evaluations of Bernoulli variables. Sampling from Bc is done

by just evaluating s < c for a uniformly random s ∈ [0, 1) and a precomputed

c. The precomputed tables comprise of values ci = exp(2i/f), for 0 ≤ i ≤ l,

f = 2σ2 where l = ⌈log2(max(j))⌉, which are implemented in distributed RAM.

The Bexp(x/f) module then searches for one-bit positions u in j and evaluates the

Bernoulli variable Bcu .

They do this in a “lazy” manner so that the evaluation aborts when the first

bit has been found that differs between a random s and c. The technique saves

randomness and run-time but also incurs non-constant run-time. The chance of

rejection is larger for the most significant bits, therefore they scan them first in

order to abort as quickly as possible. The last step is to use the random one-bit

to “sign” the samples and reject half of the samples where z = 0.

The Bernoulli sampler is suitable for hardware implementations as most

operations work on single bits (mostly comparisons) only. However, due to

the non-constant time behavior of rejection sampling, buffers were introduced

in Pöppelmann et al. [2014] between each element to allow parallel execution

and maximum utilisation of every component. To date, no time-independent

implementations of the Bernoulli sampler have been reported. Section 3.3.1

outlines the proposed constant-time Bernoulli sampler design.

Cumulative Distribution Table (CDT) Sampling

The CDT technique requires a precomputed table of discrete Gaussian cumulative

distribution function (CDF) values. As discussed in Section 3.2, the symmetry of

the distribution is exploited to sample only from Z+, saving 50% of required table

storage space. The first and last samples of the table are kept 0 and 1 respectively,

3.2 Discrete Gaussian & Side Channel Analysis Introduction 87

in keeping with the definition of a standard CDT and a total of N = τ×σ samples

(0 = S[0] < S[1] < · · · < S[N − 3] = 1) are required overall. Once the CDF values

S[·] are computed, sampling happens as follows: a sample r is drawn uniformly,

r ∈ [0, 1), with λ bits of precision, where the desired sample, x, is found satisfying

interval S[x] ≤ r < S[x + 1], occurring with probability ρ[x] = S[x + 1] − S[x].

Consequently, for the discrete Gaussian distribution, initial table values (close to

x = 0) are more probable than values near the end.

Since the discrete Gaussian CDF is a sorted table in descending order, the

binary search algorithm can be used to find the position of the target value,

as shown in Algorithm 3.4. The search space, comprising initially of the entire

CDT (N samples), is dichotomously exhausted in every iteration of the algorithm.

Pointers min and cur point to the first and the middle of the search space,

respectively, while jmp maintains the number of search space samples reduced by

half. In every iteration of the while loop, r is compared to the middle value (cur) of

search spaces, whose upper or lower half is discarded depending on the comparison

result. Consequently, for a bounded interval, the number of comparisons required

before a match is found does not exceed ⌈log2(N)⌉. A uniformly sampled bit b is

used to dictate the sign of result x.

The use of discrete Gaussian sampling based on large pre-computed CDTs was

first proposed by Peikert [2010], and adapted by Ducas et al. [2013] for use in

their signature scheme BLISS. Several reductions to the table size were suggested

by Pöppelmann et al. [2014] for a reconfigurable hardware implementation of

BLISS. Firstly, the most significant m bits of r could be hashed to reduce the

search space according to some precomputed guide tables. Choosing m = 8 cuts

the 2891 entries initially required for BLISS into 2m intervals requiring guide

tables holding the min and cur pointers. As a consequence, the complexity of

the binary search is reduced from ∼ 11.5 searches to ∼ 1.5 searches on average.

Secondly, the adoption of Lemma 1 on BLISS parameters significantly reduces

3.2 Discrete Gaussian & Side Channel Analysis Introduction 88

Algorithm 3.4 Sampling DZ,σ using the Cumulative Distribution Table (CDT) and
binary searches
Require: Three Integers min, cur, and jmp

Discrete Gaussian CDT Samples: N = τ × σ, 0 = S[0] < S[1] < · · · <
S[N − 3] = 1
Sample a bit b uniformly in {0, 1}
Sample r uniformly in {0, . . . , (2λ − 1)}

Ensure: min← 0; cur ← (N/2); jmp← cur;
while (jmp > 0) do

cur ← min+ jmp;
if (r ≥ S[cur]) then

min← cur;
end if
jmp← jmp >> 1;

end while
return x = (−1)bmin

the standard deviation for CDT, accompanied by a table size reduction by a factor

of 11. Thirdly, a floating point representation of CDT samples with a variable

mantissa size skips leading zero storage, reducing the table size further by a factor

of 2.

These optimisations effectively reduce the precomputed CDT sizes, conse-

quently reducing search space and improving design throughput. However, hashing

divides the search intervals into irregular sizes, meaning the binary search within

intervals has non-constant bounds, making it susceptible to timing analysis at-

tacks. The only CDT-based discrete Gaussian sampler promising a constant-time

throughput for small standard deviations relies on a array of N parallel compara-

tors, of λ-bits each, comparing against the uniform number r [Pöppelmann and

Güneysu, 2012]. Each comparator returns a binary answer, the first comparator x

satisfying S[x] ≤ r < S[x+ 1] is the required result. This fully pipelined design

results in a single cycle per sample throughput but the large number of parallel

comparisons renders it inefficient in terms of hardware resources. Du and Bai

[2015] optimise the hardware area by employing a piecewise comparison instead of

3.2 Discrete Gaussian & Side Channel Analysis Introduction 89

a full λ-bit comparison in the binary search algorithm. To compare any λ-bit table

sample and a uniform value of the same size, comparing the first m bits can give a

definite result of being greater or smaller with probability (2m − 1)/2m (99.6% for

m = 8) and increases for larger m. In the case of an equality, m is increased and

a larger comparison must be carried out. This lazy comparison scheme not only

reduces the need for large comparators, but also economises the need for uniform

sample bits required per output. Hashing is used to further narrow down the

binary search time resulting in an area-efficient and yet high average throughput

performance. Section 3.3.2 outlines the proposed constant-time CDT sampler

design.

Knuth-Yao Sampling

The Knuth-Yao sampling technique was proposed by Knuth and Yao [1976], which

presents a tree based algorithm for sampling from non-uniform distributions by

using a minimal number of input uniform bits, that is, close to the entropy of

the probability distribution. Given a probability distribution represented by

p0, p1, . . . , pN , while each sample is represented by a maximum of λ bits, the

probability matrix P can be represented as a N × λ binary matrix (after adding

leading/trailing zeros). A binary tree, called the discrete distribution generating

(DDG) tree, can be constructed as an equivalent representation, having λ−levels,

comprising two types of nodes: internal nodes (called I nodes) having two children

each or terminal nodes (called T nodes) without children.

The DDG is constructed to ensure that the number of terminal nodes at the

ith level of the tree equals the number of non-zero bits in the ith column of the

probability matrix P . Each of these terminal nodes is marked by the row number

of P . The sampling process is then a random walk starting from the tree root

moving down, consuming a single uniform bit at each step, taking the left node

of the next level in case of encountering a 0 and right node otherwise. Hitting

3.2 Discrete Gaussian & Side Channel Analysis Introduction 90

a terminal node outputs the integer label associated with it, culminating in the

generation of a successful sample.

I

I I

I 0 1 3

I 2

I 1

1 2

‘’ 1

Level 0P0 = 0.00101

P1 = 0.001001

P2 = 0.101101

Level 0 1 2 3 4 5 6

Nodes I I I I I I 1

2 I 0 2 1 2

1

2

N=3, =7
…

Level 6

I

2

Fig. 3.1 The Knuth-Yao based discrete Gaussian sampler for a toy example: the
probability matrix and the DDG tree (right) with its table based representation.

Figure 3.1 illustrates a construction of a DDG tree, for a toy example. The

tree levels equal the number of columns of P , while the number of terminal nodes

match the non-zeros in P . Hence, a DDG tree can have at most (N × λ) terminal

nodes and (N × λ)− 1 internal vertices. Figure 3.1 (right) shows an equivalent

tree and matrix representation of P , where each of the ith columns of the table

has no more than (2× i) ≤ (N × λ) entries, since that is the upper bound on the

number of terminal nodes. To run the sampling algorithm, the entire table does

not need to be stored, instead P and the local information of one column suffices

so that the information of the next column can be constructed from it at runtime.

Roy et al. [2013b] proposed a hardware friendly random walk for the discrete

Gaussian sampler, based on this exploitation of ith column/tree level information

to interpret the next. At any level i of the tree traversal, let d denote the distance

between the visited node and the right most node of that tree level. Therefore,

at the DDG tree root (the 0th level), d = 0. Depending on a 0 or a 1 being

encountered, the distance becomes 2×d+ 1 or 2×d, respectively, after consuming

one uniform bit. Next, they exploit the fact that in the construction of a DDG

tree, all the I nodes are on the left and all the T nodes (that are non-zero and

contribute to the Hamming weight of that particular M column) are on the right.

3.2 Discrete Gaussian & Side Channel Analysis Introduction 91

Hence, subtracting the Hamming weight of the current column from the distance

d at the ith level of the tree will show if the current node is an I node or a T node,

based on whether the result is positive or negative respectively.

Algorithm 3.5 Sampling DZ,σ using the Knuth-Yao technique
Require: Three Integers d, hit and ctr;

1: Discrete samples of Gaussian distribution as matrix P with N × λ dimension
and N = τ × σ;

2: Sample bits uniformly in {0, 1}, store in array r;
3: Column-wise Hamming distance of P, i.e., h_dist[j] = ∑N

i=0 P [i][j];
Ensure: d← 0;hit← 0; ctr ← 0;

4: for (int col← 0 : col < λ; col← col + 1) do
5: d← 2d+ (!r[ctr + +])− h_dist[col]
6: if (d < 0) then
7: for (int row ← 0 : row < N ; row ← row + 1) do
8: d← d+ P [row][col];
9: if (d == 0) then

10: hit← 1;
11: break;
12: end if
13: end for
14: end if
15: if (hit) then
16: break;
17: end if
18: end for
19: return (−1)r[ctr++].row :

Algorithm 3.5 gives the procedural details of the Knuth-Yao sampling algorithm.

Assertion of the hit signal indicates a successful sampling completion and ctr

is the iteration integer over the random binary samples array r. h_dist is a

λ-element vector holding the column-wise Hamming distances of the matrix P.

The loop at line 4 iterates over the columns, starting from the most significant bit

position, and checks if a terminal node is hit in that level of the DDG tree, which

is done by checking the sign bit of d; each iteration of this loop consumes one

uniformly sampled bit. In case a column is localised for a hit, the loop in line 7

iterates over all the rows in that column, until a row is localised where a hit is

3.2 Discrete Gaussian & Side Channel Analysis Introduction 92

found, terminating the two loops. No uniform random bits are consumed during

these iterations. A signed bit is attached to the sample, based on the uniformly

sampled bit.

Devroye [1986] shows that in general the required uniformly generated bits

for a sample generation is at most two more than the entropy of the distribution.

Hence, for the test case σLP = 3.33, the number of uniform bits required per

sample is 5.3. The implementation, seen in Algorithm 3.5, requires minimal

resources for storing the N × λ dimensional binary matrix P, a λ element h_dist

vector of ⌈log2(N)⌉ bits each, and several pointers for holding the row, col, and

d, as well as a sampling termination signal hit.

Dwarakanath and Galbraith [2014] suggest a compression of the probability

matrix, since most of the distribution values close to the tail have an increasingly

dominant number of leading zeros. A block variant of the Knuth-Yao algorithm

was proposed that divides consecutive probabilities into different blocks with

roughly the same number of leading zeros resulting in a reasonable saving in the

storage requirement of P . Roy et al. [2013b] exploited this block based compression

for the Knuth-Yao sampler in an FPGA implementation with σLP = 3.33. Instead

of keeping a h_dist vector for column Hamming weight, they iterate over the

columns of the P matrix, bit by bit. Additionally, the iteration proceeds from

bottom to top, consuming one cycle for each bit of the probability matrix. Since

the discrete Gaussian values close to the centre are much more likely, working

from top to bottom instead significantly accelerates the algorithm’s average speed

(as done in Algorithm 3.5). Consequently, the implementation Roy et al. [2013b],

though very lightweight, requires on average 17 clock cycles to generate one discrete

Gaussian sample. Subsequent work by Roy et al. [2014a] improved the speed

up to 2.5 cycles per sample, by virtue of table hashing in multiple stages. Since

these implementations were non-constant time in nature and susceptible to timing

analysis based attacks, a random shuffle method is used to protect the discrete

3.2 Discrete Gaussian & Side Channel Analysis Introduction 93

Gaussian distributed polynomial against side-channel attacks, at the cost of

additional FPGA slices. De Clercq et al. [2015] present a software implementation

of ring-LWE encryption on a 32-bit ARM Cortex-M4F microcontroller using a

Knuth-Yao based fast discrete Gaussian sampler, bettering all existing encryption

implementations in software, where discrete Gaussian sampling requires an average

28.5 cycles per sample. Section 3.3.3 outlines the proposed independent-time

Knuth-Yao sampler design.

3.2.2 Timing Analysis Of Discrete Gaussian Samplers

Side-channel analysis was introduced in Section 2.7, this section will further discuss

timing analysis with respect to the proposed research in this chapter.

Timing attacks were proposed for the first time by Kocher [1996]. These

attacks exploit the time difference between operations to gain information about

the secret key. Exploitable timing differences can be caused by routines whose

execution time depends on the secret data or by the difference in data access

patterns caused by memory hierarchy. These attacks have been successfully

applied against several cryptographic schemes, including lattice-based schemes (in

particular NTRU by Silverman and Whyte [2007]). Thus in the context of LBC,

it is crucial to implement schemes resistant against timing attacks.

The need for a discrete Gaussian sampler resistant against timing attacks has

been called for by NIST [Moody, 2016, NIST, 2016], which require implementations

of encryption and signature schemes (of which discrete Gaussian samplers are

core components) explicitly resistant against side-channel attacks, at 128-bit

classical security. As shown by Saarinen [2017], software implementations of

discrete Gaussian samplers have been shown to leak information through the

timing channel. Bruinderink et al. [2016], in particular, presented a timing-based

side-channel attack, exploiting the cache patterns on the CDT sampler. Also

3.2 Discrete Gaussian & Side Channel Analysis Introduction 94

the majority of hardware designs and implementations reported so far, such as

those by Roy et al. [2013b], Pöppelmann et al. [2014], Howe et al. [2016b], are

susceptible to timing attacks.

Resistance against timing attacks is achieved when all the operations involving

secret information are executed in a time which is independent from the secret

data. Time independence can be defined in the following way:

Definition 1 (Time Independence). The property of independent-time is

achieved when no information about the secret value(s) is leaked by the time

required for its execution.

This property can be achieved in several ways; the most common methods are

ensuring constant execution time or random shuffling of the secret values.

The discrete Gaussian sampler proposed by Pöppelmann and Güneysu [2013],

which targets constant execution time, implements a time-independent CDT

sampler for encryption. The area overhead of that design is however too high

to be practical. Roy et al. [2014a] also presented a discrete Gaussian sampler

resistant against timing attacks. The design implements a fast Knuth-Yao based

non-constant time discrete Gaussian sampler which generates a batch of samples,

which is subsequently shuffled to disassociate the related timing information.

The primary objective of this chapter is to propose hardware designs of discrete

Gaussian samplers which achieve timing independence as in Definition 1. However,

time-independence is not the only desired feature; implementations of discrete

Gaussian samplers should also ensure fast response time (for high throughput)

and require minimal area occupation (for constrained devices). In this research

therefore, the design goals are considered and the limitations of previous work

are overcome by proposing independent-time and practical implementations of the

three major discrete Gaussian sampling schemes currently used in lattice based

cryptography. However, it should be noted that high throughput is considered

3.3 Efficient Time-Independent Discrete Gaussian Samplers 95

as a secondary objective and low area is considered a tertiary objective to be

optimised, since the main objective is to ensure time-independence of the proposed

designs.

3.3 Efficient Time-Independent Discrete Gaus-

sian Samplers

The following section discusses the novel discrete Gaussian sampler architectures

proposed in this research.

3.3.1 Time-Independent Bernoulli Sampling

Discrete Gaussian sampling using the Bernoulli technique is performed in

constant-time when the table comparison is always completely evaluated. This

means that a comparison would not be aborted if one mismatch between the

randomly generated bit r and the table value c is found. However, if a rejection

of the Bernoulli variable leads to the rejection of a complete sample, is r ≥ c

an abort can be tolerated. For acceptance (r < c) instead, the full comparison

has to be made. The dependency on the input value of x would in fact leak

information. The leakage can be mitigated by evaluating the whole table in a

pipelined fashion, so that no secret addresses are used (the whole table has to be

read). This requires a large number of random bits, which are generated using

Trivium x32 as a PRNG. The PRNG produces 32 random bits, sufficient for the

whole table comparison, and they are stored in a register, ready to be used when

j = y(y + 2kx) is calculated. In the case of a rejected value, the evaluation can

abort early since rejection does not leak any secret information.

Figure 3.2 illustrates the high-level architecture of the proposed constant-time

Bernoulli sampler. The binary Gaussian module includes the reduced precision

3.3 Efficient Time-Independent Discrete Gaussian Samplers 96

λ = 64-bits, as proposed by Saarinen [2015, 2017], (instead of 128-bits) and uses a

64-bit shift register (implemented in a LUTs on the target FPGA device) to store

the precomputed expansion. This operation, as well as the uniformly random

value y ∈ {0, 1, . . . , k − 1}, are also improved by incorporating an unrolled x8

Trivium as a PRNG. Previous designs by Pöppelmann et al. [2014] required 12

bits of randomness for the binary Gaussian component and 8-bits of randomness

for the uniform value k. The design proposed in this research combines an x8

unrolled Trivium with a reduced precision, meaning the computation can be

completed in two clock cycles instead of ≈ 20 clock cycles using a single bit per

clock PRNG. The values of j and z are then used in the evaluation, j is used

to evaluate b ← Bexp(−j/2σ2) where if b = 1 the value z is accepted and output,

otherwise it is rejected.

Fig. 3.2 High level architecture of the proposed constant-time Bernoulli sampler
with variables and their bit lengths given, which uses a x8 and x32 Trivium as a
PRNG.

For the table evaluation, since Gaussian convolutions (that is Lemma 1) are

integrated; two table evaluation components are employed since this significantly

decreases clock cycle count per sample. Moreover, each evaluation is able to

compute a 128-bit comparison on every clock cycle, meaning per clock cycle two

rows can be compared. Once the pre-calculation components are completed and

the pipeline is full, input values to the tables will be ready after every clock cycle,

meaning a discrete Gaussian sample takes exactly ⌈⌈log2 (max(j))⌉/2⌉+ 2 cycles,

3.3 Efficient Time-Independent Discrete Gaussian Samplers 97

which includes ⌈⌈log2 (max(j))⌉/2⌉ for x1 ← Dσ′ , +1 more clock cycle for x2 ←

Dσ′ , and +1 more clock cycle for them to be combined as x = x1 + 11x2 ← Dσ.

The sampler is designed generically such that it can operate for both standard

deviations, σLP = 3.39 and σBLISS = 215.73, only by adapting the lookup table

and the constants. Precomputed tables are stored in distributed RAM, of size

λ log2 2.4τσ2, which for σBLISS = 215.73 requires 784 bits and improves upon the

work of Pöppelmann et al. [2014] by ≈ 48% in table space, and for σLP = 3.39

requires 400 bits. The performance of this hardware design is presented in Section

3.4.1.

3.3.2 Time-Independent Cumulative Distribution Table

Sampling

The binary search for a desired sample can result in an early termination, in the

case where the equality comparison of a uniformly sampled r and the S[cur] results

in an exact match, although this early termination is only likely with a very small

probability. Algorithm 3.4 for CDT sampling computes the inequality (instead

of the 64-bit equality comparison), and hence avoids early termination bounding

the algorithm for
[
⌊log2(N)⌋, ⌈log2(N)⌉

]
search iterations before generating a

result. For CDT with N as a power of two, the algorithm performs inherently in

constant-time. For all other N , the algorithm is tweaked to occasionally perform

an extra iteration to ensure the algorithm complexity is fixed to ⌈log2(N)⌉.

For the generation of discrete Gaussian samples with σLP = 3.33, the CDF

table S consists of N = 32 (⌈τ × σLP⌉) entries, each consisting of λ = 64 bits of

precision (refer to Table 3.1). Hence, a single ported BRAM, having a 5-bit address

and 64-bit data ports suffices for the design. A 64× unrolled Trivium is used as a

PRNG for the generation of the uniform samples r, where the initialisation of the

module is handled externally at startup and then controlled by the binary search

3.3 Efficient Time-Independent Discrete Gaussian Samplers 98

Fig. 3.3 The CDT discrete Gaussian sampler for σBLISS = 215, using two BinSearch
state machines each accessing the CDF table for σ′

BLISS = 19.47.

state machine (referred to as BinSearch). The Trivium module is activated by

the enable output pulse signal from BinSearch, so that the uniform samples are

only generated when required. For σ′
BLISS = 19.47, the CDT table S is larger

(N = 184 holding N × λ ≈ 11K bits).

According to Lemma 1, for each valid discrete Gaussian sample, two samples

of σ′
BLISS = 19.47 are required. A single BinSearch state-machine instance would

take 2× ⌈log2(184)⌉ = 16 cycles for generation of a single valid sample. However,

to improve throughput, two instances of a state-machine are used to parallelise two

independent searches (seen in Figure 3.3). The two state machines BinSearch0 and

BinSearch1 each get a 64-bit uniformly random number from the Trivium-based

PRNGs, in two consecutive clock cycles.

The BinSearch state-machines initiate their processing from the START state,

resetting three pointers, namely, min, cur, and jmp, with initial values, as given

in Algorithm 3.4. They transition unconditionally to the SEARCH state in the next

clock cycle that updates their three pointers as per the result from their 64-bit

comparison operation. After exactly 8 cycles an appropriate x is found, and the

state generates a single bit hit to signal this occurrence. This hit also activates

the Trivium module to request a new uniformly random 64-bit value.

BinSearch0 and BinSearch1 then share the same dual ported BRAM, each

port having 8-bit address and 64-bit data ports. The state machines work inde-

3.3 Efficient Time-Independent Discrete Gaussian Samplers 99

pendently to generate two random samples x1, x2 ← Dσ′ in 8 clock cycles; the two

samples are buffered on their respective hit signals into registers. The samples are

then combined as x = x1 +11x2 where a sign bit is also attached. The performance

results of this hardware design are presented in Section 3.4.3.

3.3.3 Time-Independent Knuth-Yao Sampling

Inherently, the Knuth-Yao sampler operates in non-constant time. Considering

the column and row localisation phases take one clock cycle to jump from one

column/row to the other, successful sampling requires at least 2 cycles if the

0th row and 0th column are being localised for a hit, with the maximum being

(λ×N) when the last row and last column get a hit. The average response time is

evaluated to be ≈ 10.6 cycles since the column and row localisation each require

≈ 5.3 cycles.

Figure 3.4 gives an architectural description of the proposed Knuth-Yao sampler

in hardware, given a probability matrix P . Trivium is used as a PRNG for the

generation of the uniformly sampled bit r that is inverted to get r_n. The

initialisation of Trivium is handled externally at startup, which afterwards is

controlled via the state-machine. An en signal is used to activate the PRNG to

produce randomness only when required. The state-machine initiates its processing

from the START state, resetting output registers; row, col, d, en and hit with

initial values, as given in Algorithm 3.5. It transitions unconditionally to the

SEARCH state that updates the output registers as per the state of the d pointer.

As long as d is a non-zero positive number, the state-machine keeps changing

columns, consuming random bits and updating d accordingly. If d is a negative

number, then the column for a hit is already localised and the row search starts

without changing column values. Since no new random bits are required, en is

kept low and d is updated by adding the P matrix values until d reduces to 0.

3.3 Efficient Time-Independent Discrete Gaussian Samplers 100

Assertion of a hit ends the sampling process, where the row number is assigned a

sign bit based on a uniformly sampled bit before completing a successful discrete

Gaussian sample generation.

Fig. 3.4 A Knuth-Yao based discrete Gaussian sampler for σLP = 3.33

The transpose of the matrix P is stored in distributed ROM (or in a BRAM) in

the proposed hardware design. When using a BRAM, storing a mere 64×32-bit P

matrix is excessive. For better resource utilisation, the h_dist vector of Hamming

distances is also stored in the same BRAM. Additionally, hashing is employed to

boost the throughput, since the response time is nevertheless non-constant and

the same BRAM holding the P matrix can also store the hash tables. To consider

8 bits of uniform random numbers at a time, a hash table with 256 entries is

easily accommodated in BRAM, for the case where σLP = 3.33, 249 out of these

256 entries result in a hit (97.26%). Otherwise, the hash table entries keep the d

value to be loaded in the KYSearch state-machine directly and scanning of the

first 8 columns is skipped, improving throughput.

To make the sampler run in independent-time, operations can be made constant-

time, that is the largest possible cycle count (λ×N) must be ensured before a

discrete Gaussian sample is generated as an output. For σLP = 3.33, it turns out

to be too slow to be practical (2000 cycles per valid sample generation, and worse

3.4 Comparison and Results of Sampling Hardware Architectures 101

for signature parameters). Hence, to achieve timing independence, the discrete

Gaussian samples are instead shuffled after the generation of a complete block.

Considering a block size of n samples, if n1 are generated by hashing then the

remaining n2 = n−n1 are generated by the KYSearch state-machine. The samples

are stored in another BRAM such that n1 samples are accommodated at the top

of the BRAM with the remaining at the bottom.

A simplistic shuffling algorithm is implemented, that is the Fisher and Yates

[1948] shuffle (also used by Roy et al. [2014a]), which goes over each of the n2

samples, swapping these within randomly generated locations [0, n1− 1]. A simple

shuffler state-machine enables each swap in two clock cycles considering a

dual-ported BRAM. Due to the small percentage of n2 samples in BRAM (2.7%),

shuffling does not significantly exacerbate the sample generation throughput.

However, the state-machine and the BRAM require extra FPGA resources.

The Knuth-Yao implementation relates the number of random bits required

(and consequently the running time of the algorithm) to the distribution entropy

(or standard deviation). For σBLISS = 215, even after using Lemma 1, the

running time will be more than 20 clock cycles per sample, which is far too

slow for practical purposes. Hashing would also require much larger tables to be

effective. Consequently, no further work is undertaken on the Knuth-Yao sampler

for signature parameters. The performance results of this hardware design are

presented in Section 3.4.2.

3.4 Comparison and Results of Sampling Hard-

ware Architectures

In this section the performance results are described and compared against the same

implementations for encryption (for σLP = 3.33) and signatures (for σBLISS = 215),

3.4 Comparison and Results of Sampling Hardware Architectures 102

using the parameters stated in Table 3.1. The designs are implemented on either

the Spartan-6 LX25-3, Virtex-5 LX30, or Virtex-6 LX75 FPGA devices to compare

with previous research, where the results obtained are all post place-and-route

(PAR) using Xilinx ISE 14.7. Throughput and throughput per area have been

evaluated for all schemes in terms of sampling operations per second (Ops/s) and

sampling operations per second per slice of FPGA (Ops/s/S), respectively, in

Tables 3.2-3.4.

Significantly more random bits are required to guarantee constant computation

time. Random bits are produced by Trivium x8 and x32 designs. The resource

needed for these, when compared with the standard Trivium x1, are rather

negligible: 28 additional LUTs, 63 additional flip-flops, and 15 additional slices for

Trivium x8 and 26 additional LUTs, 147 additional flip-flops, and 21 additional

slices for Trivium x32.

3.4.1 Bernoulli Results

Table 3.2 shows the performance of the constant-time Bernoulli sampler in hard-

ware. The results are compared to other implementations which target the same

lattice-based cryptosystem but are not protected against timing attacks.

To achieve constant computation time, the proposed Bernoulli samplers need

to perform many more comparisons than the designs previously proposed in

the literature [Pöppelmann et al., 2014, Howe et al., 2016b]. For this reason,

the number of flip-flops in this design is larger than others. However, these

comparisons are done in an optimal way by performing them in a single clock

cycle. Additionally, incorporating x8 and x32 unrolled Trivium components (see

Figure 3.2) has significantly improved the overall design and alleviated the need for

excess data buffers, in comparison to previous work. The halving of the precision

parameter also contributed to the reduction of the LUT and slice usage.

3.4 Comparison and Results of Sampling Hardware Architectures 103

Ta
bl

e
3.

2
Po

st
-p

la
ce

an
d

ro
ut

e
re

su
lts

of
th

e
Be

rn
ou

lli
sa

m
pl

er
fo

r
en

cr
yp

tio
n

(σ
LP

=
3.

39
)

an
d

sig
na

tu
re

s
(σ

B
LI

SS
=

21
5.

73
),

in
co

m
pa

ris
on

to
th

os
e

ta
rg

et
in

g
th

e
sa

m
e

di
sc

re
te

G
au

ss
ia

n
pa

ra
m

et
er

s
w

ith
no

n-
co

ns
ta

nt
op

er
at

in
g

tim
e.

O
p.

Im
pl

em
en

ta
ti

on
D

ev
ic

e
λ

LU
T

/F
F

B
R

A
M

Fr
eq

.
C

lo
ck

R
an

d.
O

ps
/s

O
ps

/s
/S

T
im

e
/S

lic
e

/D
SP

(M
H

z)
C

yc
le

s
B

it
s

(×
10

6)
(×

10
6 /

S)
In

d.

T
hi

s
w

or
k

X
C

6S
LX

25
-3

64
67

9/
15

80
/
27

9
0/

0
13

3
7

85
19

0.
06

✓
σ

LP
=

51
6/

14
75

/
20

1
2/

0
16

7
7

85
23

.8
6

0.
12

✓
3.

33
H

ow
e

et
al

.[
20

16
b]

X
C

6S
LX

25
-3

64
84

6/
93

4/
29

7
0/

0
12

9
≈

12
≈

26
10

.7
5

0.
03

✗

Pö
pp

el
m

an
n

an
d

G
ün

ey
su

[2
01

4]
X

C
6S

LX
9-

2
80

13
2/

40
/
37

0/
0

13
6

≈
14

4
≈

96
0.

94
4

0.
02

✗

σ
B

LI
SS

=
T

hi
s

w
or

k
X

C
6S

LX
25

-3
64

10
01

/1
84

2/
35

6
0/

0
13

9
13

85
10

.6
9

0.
03

✓
21

5.
73

57
1/

14
80

/
16

7
3/

0
17

1
13

85
13

.1
5

0.
08

✓
Pö

pp
el

m
an

n
et

al
.[

20
14

]
X

C
6S

LX
25

-3
12

8
12

31
/1

13
4/

45
2

0/
1

13
7

≈
17

.9
5

≈
33

7.
63

0.
01

✗

3.4 Comparison and Results of Sampling Hardware Architectures 104

Ta
bl

e
3.

3
Po

st
-p

la
ce

an
d

ro
ut

e
re

su
lts

of
th

e
K

nu
th

-Y
ao

sa
m

pl
er

fo
re

nc
ry

pt
io

n
(σ

LP
=

3.
33

),
in

co
m

pa
ris

on
to

ex
ist

in
g

wo
rk

wi
th

sa
m

e
di

sc
re

te
G

au
ss

ia
n

pa
ra

m
et

er
s.

O
p.

Im
pl

em
en

ta
ti

on
D

ev
ic

e
λ

LU
T

/F
F

B
R

A
M

Fr
eq

.
C

lo
ck

R
an

d.
O

ps
/s

O
ps

/s
/S

T
im

e
/S

lic
e

/D
SP

(M
H

z)
C

yc
le

s
B

it
s

(×
10

6)
(×

10
6 /

S)
In

d.

R
oy

et
al

.[
20

13
b]

5V
LX

30
90

14
0/

66
/4

7
0/

0
33

3
≈

17
≈

5.
3

19
.6

1
0.

42
✗

14
9/

69
/5

3
0/

0
30

3
≈

16
≈

5.
3

18
.9

4
0.

36
✗

R
oy

et
al

.[
20

14
a]

5V
LX

30
-3

90

10
1/

81
/3

8
0/

0
34

4
≈

17
≈

5.
3

20
.2

8
0.

53
✗

σ
LP

=
10

5/
60

/3
2

0/
0

40
0

≈
17

≈
5.

3
23

.5
3

0.
74

✗

3.
33

10
2/

48
/3

0
0/

0
38

4
≈

17
≈

5.
3

22
.6

2
0.

75
✗

11
8/

48
/3

5
0/

0
33

3
≈

13
≈

5.
3

13
3.

33
3.

81
✗

T
hi

s
w

or
k

5V
LX

30
-3

64
99

/2
1/

35
0/

0
31

0
≈

10
≈

5.
3

31
.0

2
0.

89
✗

59
/2

5/
22

1/
0

21
2

≈
1.

16
≈

8.
3

18
3.

02
8.

32
✗

13
3/

52
/4

8
2/

0
21

2
≈

1.
23

≈
8.

3
17

2.
60

3.
60

✓

3.4 Comparison and Results of Sampling Hardware Architectures 105

The proposed Bernoulli sampler can generate at least 10 samples per second

for BLISS signature parameters and 19 samples per second for LP encryption

parameters, which as well as being the first Bernoulli sampler to operate in

constant-time, also betters the speed of the previous hardware implementations

by Pöppelmann et al. [2014]. In general it can be seen from Table 3.2 that overall,

despite the increase in flip-flop consumption, the Bernoulli samplers for both

standard deviations improve on previous designs.

3.4.2 Knuth-Yao Results

Table 3.3 compares the proposed Knuth-Yao samplers (where σLP = 3.33) with the

state-of-the-art. Roy et al. [2013b] present a σLP = 3.33 discrete Gaussian sampler

design requiring around 5.3 random bits and 17 clock cycles per sample. The slow

throughput was primarily due to the bit-by-bit scanning of the probability matrix

P, while introducing multiple bit scanning per clock after column localisation does

slightly improve throughput, there is an additional resource cost. Additionally,

Roy et al. [2014a] present various low latency variants of the same architecture,

changing the width and height of the matrix P, each requiring 17 clock cycles

per sample. They employ multi-stage table hashing to improve throughput up to

≈ 2.5 clock cycles per sample and subsequently a shuffler to make the sampler

time-independent. However, the results for this hardware design, with a shuffler,

are not provided by Roy et al. [2014a].

The first set of results for the proposed hardware designs is undertaken without

BRAMs and hashing, in order to fairly compare to the existing work by Roy

et al. [2014a] (without hashing). In the second set of results hashing is utilised,

wherein BRAM is used to store the P matrix, the h_dist, and the hashing table.

At the cost of one additional BRAM, the results of this design improves upon

the throughput performance of the best hardware design by Roy et al. [2014a]

3.4 Comparison and Results of Sampling Hardware Architectures 106

by more than a factor of 2. The final set of results is for the Knuth-Yao sampler

which includes a shuffler for time independence; hence another BRAM is used for

the generated discrete Gaussian samples, meaning the slice budget increases to

accommodate the shuffler. As a consequence, the throughput decreases.

3.4.3 Cumulative Distribution Table Results

For the CDT sampler, FPGA implementations with and without BRAMs are

proposed. For σLP = 3.33, a single port distributed ROM is used. The number

of slices can be significantly reduced if BRAMs are utilised, as shown in Table

3.4, where one instance of RAMB36 is used in a 64× 32 configuration. However, in

this configuration the maximum operable frequency is halved. The reduction in

slices is higher for σBLISS = 215 due to the larger distribution table being shifted

to BRAM. In this case, the critical path is not significantly increased.

Table 3.4 compares the proposed CDT samplers with the state-of-the-art.

The only other constant-time CDT implementation for σLP = 3.33, proposed

by Pöppelmann and Güneysu [2013], operates at a frequency of more than

4× lower. The slice count is also 5x larger, contributed primarily by as many

parallel comparators as the S table words. Hence, despite the reported CDT

implementation generating a single sample per cycle [Pöppelmann and Güneysu,

2013], the proposed design in this research proves to be a very lightweight and

yet a constant-time alternative, outperforming it by a factor of around 5× in

terms of Ops/s/S. The CDT sampler design by Du and Bai [2015] is lightweight in

resource consumption and achieves good average throughput with a small number

of average uniform random bits required per sample, by virtue of hashing and

piecewise lazy comparison. However, the design by Du and Bai [2015] is not an

independent time design.

3.4 Comparison and Results of Sampling Hardware Architectures 107

Ta
bl

e
3.

4
Po

st
-p

la
ce

an
d

ro
ut

e
re

su
lts

of
th

e
C

um
ul

at
iv

e
D

ist
rib

ut
io

n
Ta

bl
e

(C
D

T
)

sa
m

pl
er

fo
r

en
cr

yp
tio

n
(σ

LP
=

3.
33

)
an

d
sig

na
tu

re
s

(σ
B

LI
SS

=
21

5)
,i

n
co

m
pa

ris
on

to
ex

ist
in

g
re

su
lts

w
ith

sa
m

e
di

sc
re

te
G

au
ss

ia
n

pa
ra

m
et

er
s.

O
p.

Im
pl

em
en

ta
ti

on
D

ev
ic

e
λ

LU
T

/F
F

B
R

A
M

Fr
eq

.
C

lo
ck

R
an

d.
O

ps
/s

O
ps

/s
/S

T
im

e
/S

lic
e

/D
SP

(M
H

z)
C

yc
le

s
B

it
s

(×
10

6)
(×

10
6 /

S)
In

d.
Pö

pp
el

m
an

n
&

6V
LX

75
T

-2
80

86
3/

6/
23

1
0/

0
61

1
85

61
0.

26
✓

G
ün

ey
su

[2
01

3]
10

0
11

57
/6

/3
14

0/
0

58
1

85
58

0.
18

✓

σ
LP

=
T

hi
s

w
or

k
6V

LX
75

T
-2

64
11

2/
19

/4
3

0/
0

29
7

5
64

59
.4

1.
38

✓

3.
33

53
/1

7/
15

1/
0

19
3

5
64

38
.6

2.
57

✓

D
u

an
d

B
ai

[2
01

5]
5V

LX
30

90
43

/3
3/

17
1/

0
25

9
≈

2.
28

≈
9.

44
11

3.
6

6.
68

✗

85
/6

5/
39

1/
0

25
6

≈
1.

14
≈

9.
44

22
4.

6
5.

76
✗

σ
B

LI
SS

=
Pö

pp
el

m
an

n
et

al
.[

20
14

]
6S

LX
25

-3
12

8
92

8/
11

21
/2

99
1/

0
12

9
≈

7.
5

≈
21

17
.2

0.
06

✗

21
5

T
hi

s
w

or
k

6S
LX

25
-3

64
57

7/
64

/1
79

0/
0

13
0

8
64

16
.3

0.
09

✓

13
0/

48
/4

4
2/

0
12

6
8

64
15

.8
0.

36
✓

3.5 Recommendations 108

For σBLISS = 215, the implementation by Pöppelmann et al. [2014] compared to

this research operates in non-constant time, is costlier in terms of slice consumption,

and slower in terms of throughput per slice. Since their reported design consumes

BRAM, when compared to this implementation (with BRAM), their design remains

≈ 5× inferior in terms of Ops/s/S. However it requires around 3× less uniform

random bits per sample, compared to the proposed constant-time designs.

3.5 Recommendations

Figure 3.5 plots the post-PAR results for CDT, Knuth-Yao (KY) and Bernoulli

(Ber) samplers, both with and without the use of RAMs, targeted to the same

FPGA Spartan-6 LX25-3 device. As stated at the beginning of this chapter, results

for the discrete Ziggurat samplers are not included, due to their inefficiency.

For encryption, the RAM-free CDT (CDT_Enc) sampler surpasses all others

in terms of an overall balanced performance with area, throughput, and with

timing independence. If the use of additional BRAMs is considered, the Knuth-

Yao time-independent implementation (KY_Enc_RAM) has the best overall

performance in terms of low area and high throughput, whilst also requiring the

lowest number of random bits per sample.

For signatures, the RAM-free CDT implementation (CDT_Sign) proves to be

an overall winner, followed by the Bernoulli sampler (Ber_Sign), being around

2x more expensive in terms of slices. The CDT implementation with use of

RAM (CDT_Sign_RAM) is also the preferred option, compared to its nearest

competitor (Ber_Sign_RAM) it uses significantly less LUTs, FFs, and slices, and

also requires less clock cycles per generated sample.

3.5 Recommendations 109

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

010203040506070809010
0

11
0

12
0

13
0

Be
r_

En
c

Be
r_

En
c_

R
A

M

Be
r_

Si
gn

Be
r_

Si
gn

_
R

A
M

K
Y

_
En

c_
R

A
M

K
Y

_
En

c_
R

A
M

_
T

im
e-

D
ep

.

K
Y

_
En

c_
T

im
e-

D
ep

.

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

A
re

a
Im

pr
ov

em
en

t

O
ve

ra
ll

Im
pr

ov
em

en
t

C
D

T
_

En
c

C
D

T
_

En
c_

R
A

M

C
D

T
_

Si
gn

C
D

T
_

Si
gn

_
R

A
M

D
Zi

gg
_

En
c

D
Zi

gg
_

Si
gn

N
um

be
r

of
Sl

ic
es

SamplersPerSecond(×106)

Fi
g.

3.
5

G
ra

ph
ic

al
pe

rfo
rm

an
ce

re
su

lts
of

th
e

pr
op

os
ed

di
sc

re
te

G
au

ss
ia

n
sa

m
pl

er
s,

on
th

e
Sp

ar
ta

n-
6

LX
25

-3
FP

G
A

,w
ith

an
d

w
ith

ou
t

R
A

M
us

e.
A

ll
re

su
lts

ar
e

tim
e-

in
de

pe
nd

en
t

un
le

ss
ot

he
rw

ise
st

at
ed

(T
im

e-
D

ep
.).

3.6 Conclusion 110

3.6 Conclusion

The research on sampling hardware designs provides a thorough investigation of all

the practical discrete Gaussian samplers (CDT, Knuth-Yao, and Bernoulli) used

in lattice-based cryptosystems. Novel time-independent hardware designs are pre-

sented, as well as their subsequent implementation results, which ensure resistance

against timing attacks. In addition to timing attack resilience, the designs also

focus high throughput with low-area. A survey of all discrete Gaussian sampling

techniques as well as all FPGA-based designs reported to date are presented and

analysed. In addition to resistance against timing attacks, the proposed hard-

ware sampler designs clearly outperform most of the previously proposed sampler

architectures. The research concludes by giving recommendations for the best

performing sampling schemes, which should be considered when implementing any

lattice-based cryptosystems, especially for public-key encryption (PKE) schemes

or digital signature schemes (DSS), which require either high throughput, low

area, or an overall balanced performance.

The recommendation for both encryption and digital signatures was the CDT

sampler. In both cases, the CDT sampler outperforms the other proposed time-

independent hardware designs of the Bernoulli and Knuth-Yao samplers, in terms

of FPGA area consumption. For encryption, the CDT and Knuth-Yao samplers

closely compete, and although the CDT sampler is in general the recommendation,

for high throughput the Knuth-Yao sampler should be considered. For signatures,

the CDT sampler outperforms the Bernoulli sampler, both in terms of FPGA area

consumption and throughput.

With the improved assurances in samplers provided by the research in this

chapter, these optimised hardware designs are now ready to be integrated into

lattice-based cryptoschemes. Further research is now required into hardware

3.6 Conclusion 111

designs of cryptographic primitives, such as lattice-based PKE and DSSs. There

has been previous research into both lattice-based PKE and DSSs, however with

regards to hardware, all previous research focuses on ideal lattices. Additionally,

there are security concerns and better performing cryptanalysis regarding the

ideal lattice paradigm, such as the research by Ishiguro et al. [2014].

Currently, the standard lattice assumption has yet to be explored in hardware.

Standard lattices are viable for hardware designs and provide more confidence

in security. The next chapter focuses, for the first time, on the performance of

standard lattice-based PKE in hardware. This hardware design also utilises the

recommended discrete Gaussian sampler, the CDT sampler, proposed in this

chapter.

CHAPTER 4

Lattice-Based Encryption Over Standard

Lattices in Hardware

In Chapter 3, hardware optimised designs of discrete Gaussian samplers, a major

component within lattice-based cryptography, are presented. This chapter furthers

this research by considering an entire lattice-based cryptoscheme. This chapter

presents the first hardware design of a lattice-based cryptoscheme based over

standard lattices. The research in this chapter was presented in a publication by

Howe et al. [2016b].

The overall design goal of the scheme is for a balance between hardware resource

consumption and encryption speed. This also means the hardware design results

can fairly compare with previous hardware designs of ring-LWE encryption. When

compared to previous work for ideal lattice-based encryption hardware designs,

the proposed standard-LWE encryption hardware designs perform significantly

better than expected. The proposed hardware designs illustrate, for the first time,

that standard lattice-based assumptions are applicable for real-world applications,

especially for instances where security is paramount.

4.1 Introduction 113

4.1 Introduction

As a cryptographic primitive, public-key encryption (PKE) is fundamental for use

within security protocols, and is used in applications such as secure communications

and message verification. As described in Chapter 2, PKE is a tuple of algorithms

performing KeyGen(1n), Encpk , Decsk , which uses the publicly available public-

key (pk) and a secret-key (sk).

As also discussed in Chapter 2 (Section 2.4.1), previous hardware designs for

lattice-based encryption schemes have all focused on the ideal lattice assumption,

which are designed upon the encryption scheme by Lyubashevsky et al. [2013a]

(LPR). The LPR scheme bases its hardness on the ring-LWE problem, with the

scheme actually the ideal equivalent of the standard-LWE encrytion scheme by

Lindner and Peikert [2011] (LP), which in terms of software and hardware designs

has been significantly understudied.

Inherently, the major difference between standard and ideal lattices is the use

of keys and the computations performed using these keys. Standard lattice keys

are represented by (usually square) matrices and have computational complexity

O(n2), whereas the ideal lattice assumption allows for the first column of a

(structured) matrix to represent the entire matrix over a specific polynomial

ring. This means that a standard-LWE matrix-vector computation with large

dimensions, is made equivalent in ring-LWE to a polynomial calculation, which

has the potential of turning a quadratic calculation into a quasi-linear one (see

further discussions in Section 4.2.2). Although the efficiencies made by the

standard-to-ideal transition may significantly alleviate computational resources,

ideal lattices may be more susceptible to attacks than standard, due to the use of

structured matrices. For instance, the additional cyclic structure of ideal lattices is

a potential exploit for an attacker. Indeed, recent research has begun to investigate

4.1 Introduction 114

the security implications of weak instances and algebraic attacks of ring-LWE

[Chen et al., 2015, Elias et al., 2015, Bernstein, 2014, Cramer et al., 2015] as well

as improved sieving algorithms for finding the shortest vector in an ideal lattice

[Schneider, 2013, Ishiguro et al., 2014, Bos et al., 2014, Becker and Laarhoven,

2015].

A Gauss sieving algorithm [Micciancio and Voulgaris, 2010] consists of a

list of vectors in the lattice and a reduction algorithm, that eventually outputs

the shortest nonzero vector that can be found in that list. These cryptanalytic

algorithms on ideal lattices are also part of a shortest vector challenge (http:

//www.latticechallenge.org/) For example, the Gauss sieve algorithm of Ishiguro

et al. [2014] reports a 600x speed-up when finding the shortest vector in an ideal

lattice in comparison to a random, standard lattice of dimension 128. Finding the

shortest vectors in a lattice is equivalent to discovering the secret information and

thus breaking an entire cryptoscheme.

Critically, if the practical intention is that of cryptographic long-term security,

serious considerations are needed to evaluate if the benefits of ideal lattice-based

security outweigh the weakened confidence in security. For instance, fixed long-term

security such as those on satellites, where re-programming in the field is generally

not possible, may benefit from the use of standard lattice-based cryptography as

it provides stronger long-term security assurances. Indeed, a scheme with stronger

security assumptions is much more appropriate for these types of applications,

especially considering that any compromise of the key material and/or algorithms

would have devastating consequences to the security of data and/or the satellite

itself.

The goal of this chapter is to investigate the potential of performing encryption

over standard lattices in practice. For this purpose, a hardware architecture

of a standard-LWE encryption scheme is proposed. The target platform is a

Spartan-6 FPGA. As previously discussed in Chapter 1, FPGAs are highly suit-

http://www.latticechallenge.org/
http://www.latticechallenge.org/

4.1 Introduction 115

able for use in cryptography as they are reconfigurable and allow fast prototyping.

Moreover, FPGAs can be used for satellite applications with Xilinx [2015] pro-

ducing radiation-hardened versions. Prior ring-LWE hardware designs [Göttert

et al., 2012, Pöppelmann and Güneysu, 2013, Roy et al., 2014b, Pöppelmann

and Güneysu, 2014] have usually targeted Spartan-6 FPGAs, thus targeting the

Spartan-6 platform allows for fair performance comparison.

Additionally, previous research in this area initially proposed balanced hardware

designs (that is, a trade-off between area and throughput) [Göttert et al., 2012,

Pöppelmann and Güneysu, 2013] which were then extended to low-area, compact

designs [Roy et al., 2014b, Pöppelmann and Güneysu, 2014]. Therefore, since this

is the first investigation into standard LBC in hardware, a balanced hardware

design is thus undertaken. This is also favourable as this allows for a fairer

comparison versus ring-LWE encryption. The main contributions of this chapter

are outlined as follows:

• The first hardware design of a standard lattice-based cryptoscheme is pre-

sented; implementing standard-LWE encryption on a Spartan-6 FPGA,

which is designed to balance area and performance.

• A suitably fast discrete Gaussian sampler is incorporated from Chapter 3,

that is the CDT sampler, such that samples can be readily produced in

parallel and without delay to the critical path.

• Considering that ring-LWE requires only O(n) elements of Z, as opposed

to O(n2), to represent n vectors [Regev, 2010], that is significantly larger

keys and therefore many more operations required, the encryption scheme

performs better than expected, even competing with balanced hardware

designs for ring-LWE encryption [Göttert et al., 2012, Pöppelmann and

Güneysu, 2013] and outperforming software designs [Göttert et al., 2012].

4.2 Learning With Errors 116

• The overall encryption and decryption modules operate in constant-time,

due to the regularly structured matrix-vector multiplication unit using

the FPGA’s DSP slice. Hence, with all arithmetic and discrete Gaussian

sampling operating in constant-time, the overall encryption and decryption

schemes are protected against timing-analysis side-channel attacks.

The structure of this chapter is as follows: firstly, the LWE problem is briefly

revisited (full descriptions can be found in Section 2.2.7) as well as the LWE

encryption scheme (LP) by Lindner and Peikert [2011] (discussed in Section 2.4).

Next, an assessment on adopting standard or ring-LWE cryptography is presented.

Following this, a hardware architecture of the standard-LWE encryption scheme is

presented. Finally, the implementation results are presented and a discussion on

the performance of the proposed standard-LWE design in comparison to alternative

ring-LWE hardware designs is given.

4.2 Learning With Errors

The learning with errors (LWE) problem, introduced by Regev [2005], is to find

the secret-key s, given access to (A,b) ∈ Zn×n
q × Zn

q . The public-key is generated

uniformly given the lattice security parameter n and modulus q, and b ≡ As + e

mod q where e is noise added from an error distribution χ. Usually, χ is defined as

the discrete Gaussian distribution DZ,σ, which is defined with standard deviation

σ ∈ R, where a value x ∈ Z, sampled from Dσ, is output with probability

proportional to ρσ(x)/ρσ(Z) where ρσ(x) = exp(−x2

2σ2) and ρσ(Z) = ∑∞
i=−∞ ρσ(i).

4.2.1 LWE Encryption

Algorithm 4.1 defines the key generation, encryption, and decryption steps in the

LWE encryption scheme (LP) by Lindner and Peikert [2011].

4.2 Learning With Errors 117

Algorithm 4.1 The LWE Encryption scheme by Lindner and Peikert [2011] (LP)
1: procedure KeyGen(A, 1ℓ)
2: A← Zn×n

q

3: R1,R2 ← Dn×ℓ
σ

4: P ≡ R1 −A ·R2 mod q
5: end procedure
6: procedure Enc(pk = (A,P),m ∈ Σℓ)
7: e1, e2, e3 ← Dn

σ ×Dn
σ ×Dℓ

σ

8: m̄ = encode(m)
9: c1 ≡ et

1A + et
2 mod q

10: c2 ≡ et
1P + et

3 + m̄t mod q
11: end procedure
12: procedure Dec(sk = (R2), ct

1, ct
2)

13: m = decode(ct
1R2 + c2)

14: end procedure

Table 4.1 A table of the main parameters and key sizes for LP, as proposed by
Lindner and Peikert [2011].

Parameters “Low” “Medium” “High”
Lattice dimension n 192 256 320

Modulus q, (⌈log2(q)⌉) 4096,(12) 4096,(12) 4096,(12)
Gaussian std. dev. σ 3.54 3.33 3.19
Public-key (pk) size 442.4 kb 786.4 kb 1229 kb
Secret-key (sk) size 1 kb 1.4 kb 1.7 kb
Ciphertext (c) size 4.6 kb 6.1 kb 7.7 kb

Table 4.1 provides the parameter sets proposed by Lindner and Peikert [2011],

with additional information on the public-key sizes, secret-key sizes, and ciphertext

sizes. The hardware designs proposed are built around the 128-bit “medium”

security parameter set (n, q, σ) = (256, 4093, 3.33), but are adaptable for other

parameter sets. The research by Brakerski et al. [2013] is used to simplify the

modulus from q = 4093, to q = 212 = 4096, without weakening the security.

This simplification allows for a more efficient hardware design, since the

modular reduction component can be simplified to take the log2(4096) = 12 least

significant bits.

4.2 Learning With Errors 118

4.2.2 The Pros and Cons of Ideal Lattice-based Cryptog-

raphy

Ideal lattices are a subset of standard lattices, with the computational property

of being related to polynomials via matrices of a certain form. That is, instead of

having a matrix A ∈ Zn×n
q that is independently and identically distributed, the

matrix is structured in such a way that one column a1 ∈ Zn
q is chosen, with the

other n− 1 columns derived as the coefficient representation of the polynomial

a1xi in the ring Zq[x]/⟨f⟩, for some univariate polynomial [Lyubashevsky, 2012].

With this construction of matrices, the matrix-vector multiplication A · x

corresponds to polynomial multiplications and additions in the ring Zn
q . This

means that the n-dimensional vector-matrix product costs O(n log n) arithmetic

operations instead of O(n2), wherein optimised components such as NTTs [Pollard,

1971b, Emmart and Weems, 2011] can be used. This also means that key sizes

are also much smaller; where O(n) elements of Z are able to represent n vectors,

as opposed to O(n2) [Regev, 2010].

As described in Section 2.2.7, the ring-LWE problem is defined much like

the LWE problem. Given a prime modulus q ≡ 1 mod 2n, random polynomials

s, a1, a2, . . . , an, b1,b2, . . . ,bn ∈ Zq[x]/⟨xn +1⟩, where bi ≡ ais+ei mod q, with

ei following some small error distribution, the goal of the ring-LWE problem is

to find s, given access to pairs (ai,bi). Observe here the constraint on the prime

modulus q, which is dependent on the lattice dimension n, causing significant

restrictiveness when choosing these parameters.

For lattice-based cryptography in general, it can be seen that the shift to

ideal lattices is desirable for efficient implementations. However, this move does

not allow for a fine-grained parameter selection; essentially this is due to the

restriction that the monic polynomial f ∈ Z in the quotient ring Zq[x]/⟨f⟩ needs

to be irreducible, for instance f = ⟨xn + 1⟩ if and only if n is a power of two.

4.3 Standard-LWE Encryption in Hardware 119

As a consequence, many of the proposed parameter sets for ideal lattices are

actually derived from its analogous problem in standard lattices. For instance,

the parameters used by Pöppelmann and Güneysu [2014] in their hardware design

of the LPR ring-LWE encryption by Lyubashevsky et al. [2013a] are taken from

another encryption scheme (the LP encryption scheme) by Lindner and Peikert

[2011]. Moreover, some of these parameter sets provide more security than required,

which has adverse effects on performance.

Parameter selection for standard lattices is better understood and, although

there are practical advantages to adopting an ideal lattice-based scheme, there are

a number of reasons for choosing a scheme based on standard lattice problems.

These reasons are mainly seen in the relative ease in parameter selection and

avoiding the assumption that the security level associated with ideal lattices is

equivalent to that of standard lattices. As previously mentioned, the concern

that structured matrices weaken the security assumptions of ideal lattice-based

cryptography is demonstrated in recent examples of weak ring-LWE instances

[Eisenträger et al., 2014, Elias et al., 2015, Chen et al., 2015] and improved

cryptanalysis of ideal lattices [Bos et al., 2014, Becker and Laarhoven, 2015,

Cramer et al., 2015, Ishiguro et al., 2014, Schneider, 2013].

4.3 Standard-LWE Encryption in Hardware

Despite the recent research into both software and hardware designs for ideal LBC,

there has not yet been an investigation into the performance of standard LBC in

hardware. The only previous research that investigates the practical performance

of standard-LWE encryption is by Göttert et al. [2012]. The research provides

software results for both ring-LWE and standard-LWE encryption, however they

only consider ring-LWE encryption in hardware due to its superior performance

in software. In terms of software, for the same parameter set considered in this

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 120

research, encryption requires 11.01 milliseconds and decryption requires 2.37

milliseconds. These results are equivalent to achieving around 90 encryptions per

second and 422 decryptions per second. These software results are improved upon

significantly in the proposed hardware design.

The aim of this chapter is to assess the practicality of implementing a standard

lattice-based PKE scheme in hardware. In Section 4.4, the optimised hardware

design of the LWE LP scheme is presented. The main efficiencies in hardware are

gained from algorithmic optimisations, meaning the encryption scheme operates

recursively and repeatedly. More efficiencies are also gained from device-level

optimisations, such as adapting the modulus parameter for hardware-friendly

modular reduction and exploiting the DSPs on the FPGA platform.

The key generation stage is computed off-line in Python, with the keys being

stored on-device in BRAM. The key storage is optimised such that the public-key

is expressed as A = A0∥A1, which means all matrices (A0,A1,P) are exactly the

same size, allowing for repetitive matrix-vector computations on-device. The global

constant A $← Zn×n
q is uniformly generated using the PyCrypto [Litzenberger

et al., 2013] package Crypto.Random.random, a cryptographically strong version of

Python’s standard random module. The off-line Gaussian noise needed for matrices

R1,R2 ← Dσ is generated using Sage’s discrete Gaussian sampler [Albrecht, 2014],

where the matrices are used to calculate the public-key, P ≡ R1 −A ·R2 mod q,

with the secret-key, R2, being stored for use during decryption.

4.4 Hardware Optimised Architecture of Standard-

LWE Encryption

In this section, the components within the proposed hardware architecture are

detailed. The optimised LWE encryption scheme is described in Algorithm 4.2,

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 121

where the SUM operations, in lines 10 and 18, are multiply and accumulate

(MAC) components. Figure 4.1 illustrates the high-level architecture of the LWE

encryption scheme. A one-time initialisation stage is required to read in keys and,

in parallel, generate an initial set of 256 discrete Gaussian samples for encryption.

The core components of the hardware encryption unit are the discrete Gaussian

sampler and the arithmetic unit, which are described in Section 4.4.1 and 4.4.3

respectively. For decryption, the hardware architecture is similar to encryption,

with one exception, that it does not require a discrete Gaussian sampler module,

and thus a hardware decryption diagram is omitted.

Encoding and decoding, outlined in Section 4.4.2, are relatively low cost

operations in hardware, performed using simple bit shifting and a comparison.

Therefore this is emitted from the high level architecture and the message data is

presumed to be encoded in Algorithm 4.2.

4.4.1 Sampling the Discrete Gaussian Distribution

The preliminaries of the discrete Gaussian distribution are comprehensively de-

tailed in Sections 2.2.2 and 2.6.2, and in this section they are briefly revisited. Due

to the nature of the discrete Gaussian distribution, that is, in theory, its infinitely

long tails and infinitely high precision, there are a number of compromises that

need to be made in order to produce a practical (yet secure) implementation.

Two parameters (λ, τ) are added to the other main parameter σ, to make a tuple

of Gaussian parameters for a practical implementation of a discrete Gaussian

sampler:

• The standard deviation (σ) is conventional when using the Gaussian distri-

bution in general, and it governs the distribution’s shape. When using the

CDT approach, the standard deviation is set to σ = 3.33, however using the

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 122

Algorithm 4.2 Enc(pk = (A0,A1,P),m ∈ {0, 1}ℓ)
1: for i = 0 to n− 1 do
2: e1(i)← Dn

σ ▷ Computed on-the-fly after first encryption.
3: end for
4: for k = 0 to 2 do ▷ i.e., A0, A1, or P.
5: SUM = 0
6: if k ∈ {0, 1} then
7: for j = 0 to ℓ− 1 do
8: e← Dσ ▷ Computed in parallel to MAC operations.
9: for i = 0 to n− 1 do

10: SUM := SUM + e1(i)×Ak(i, j) mod q
11: end for
12: ci(j) = SUM + e mod q
13: end for
14: else
15: for j = 0 to ℓ− 1 do
16: e← Dσ

17: for i = 0 to n− 1 do
18: SUM := SUM + e1(i)×P(i, j) mod q
19: end for
20: ci(j) = SUM + e+ m̄(j) mod q
21: end for
22: end if
23: end for

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 123

Bernoulli approach the standard deviation is required to be σ = 3.39 (see

Section 3.2.1 for more details).

• The precision parameter (λ) determines the level of precision required

in a practical design, where the statistical distance between the “perfect”

theoretical distribution and the one chosen for practice must be no greater

than 2−λ. As described in Section 3.2, Saarinen [2015, 2017] recommends

that for a target security level of λ-bit, the precision does not need to be any

greater than λ/2, arguing that there exists no algorithm that can distinguish

between a “perfect” sampler and one with statistical distance 2−λ/2.

• The tail-cut parameter (τ) is used in calculating how much of the less-heavy

tails can be excluded from the practical design, for a given security level.

That is, with a target security level of λ-bits, the portion of the tails that

are undesired is less than 2−λ. Therefore, the tail-cut parameter can be

defined as τ = 13.4, for target security level λ = 128.

The discrete Gaussian sampler architectures used in this research therefore

consider the three practical Gaussian parameters (σ, λ, τ). Conventionally, the

sampled values are considered over the positive and negative axis; however due to

the symmetrical property of the discrete Gaussian distribution, only the positive

is required, that is x ∈ {0, . . . , τσ}, with the probability x = 0 being halved (due

to it being counted twice), where a sign-bit b ∈ {0, 1} is sampled to recover the

negative axis. In Section 3.2, this straightforward optimisation is also used, which

mainly benefits the samplers which employ tables.

In this research, two techniques are considered for discrete Gaussian noise

generation: these are the Bernoulli sampling technique [Ducas et al., 2013] and the

cumulative distribution table (CDT) sampling technique [Peikert, 2010], which are

fully described in Sections 3.2.1 and 3.2.1, respectively. The sampling techniques

will now be briefly revisited.

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 124

Bernoulli Sampling

Previous research within ideal LBC has shown the Bernoulli technique to per-

form best on small devices Oder et al. [2014] and for small standard deviations

Pöppelmann and Güneysu [2014], thus the Bernoulli technique is consider for this

research.

The Bernoulli sampler is also employed due to its simplicity and adaptability in

hardware, and does not require large pre-computations and long-integer arithmetic.

The approach combines the inversion method by Peikert [2010] and the original

discrete Gaussian sampling technique of rejection sampling (Section 3.2.1) by

Gentry et al. [2008]. The calculation of transcendental functions1, seen in the

rejection sampling technique, is bypassed by the use of Bernoulli variables. This

is then combined with the inversion method, to sample from the so-called binary

discrete Gaussian distribution Dσbin , where σbin =
√

1/(2 ln(2)), whose cumulative

probabilities are of a special form in binary, meaning that they can be computed

on-the-fly whilst also reducing the probability of rejection. The Bernoulli technique

is described in Algorithm 3.1, 3.2, and 3.3, which, when sampling according to the

Bernoulli distribution B(−x/f) using a small pre-computed table of ⌈log2(max (x))⌉

entries, is calculated with λ-bits of precision.

Cumulative Distribution Table (CDT) Sampling

In Chapter 3, the Cumulative Distribution Table (CDT) sampling technique was

found to have the best performance on FPGAs for encryption parameters [Howe

et al., 2016a], therefore the CDT hardware design is also incorporated in the

design proposed in this chapter.
1These types of functions are not expressible by a finite sequence of algebraic operations,

such as addition or multiplication. In essence they “transcend” algebra. Example of these types
of functions are the sine function, the cosine function, and the exponential function.

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 125

The CDT sampler is a table-based sampler and is described in Algorithm

3.4. The technique stores precomputed discrete Gaussian cumulative distribution

function (CDF) values in a table S[·]. The CDF values are then accessed by

sampling a uniformly random value r ∈ [0, 1), where the desired sample x is

found satisfying interval S[x] ≤ r < S[x+ 1], occurring with probability ρ[x] =

S[x+ 1]− S[x].

Fast Discrete Gaussian Sampling

Importantly, these samplers were designed such that their cycles per sample

(throughput) performance is high enough, ensuring reductions in latency for

the encryption architecture. This is further discussed in Section 4.4.3. More

specifically, in order to not delay the multiplier-accumulator (MAC) products seen

in Lines 10 and 18 of Algorithm 4.2, one discrete Gaussian sample is required, on

average, in less than 128 clock cycles.

Previous research on Bernoulli samplers used within LBC produced a discrete

Gaussian sample, on average, every 144 clock cycles [Pöppelmann and Güneysu,

2014]. Therefore, a new Bernoulli design is proposed, which gains in throughput

by incorporating additional uniform randomness via unrolled stream ciphers

(Trivium [De Cannière, 2006]). The Bernoulli design consumes slightly more

area in comparison to the one proposed by Pöppelmann and Güneysu [2014] (the

samplers are compared in Table 3.2), but allows for faster sampling and is designed

to match the performance of the arithmetic unit, detailed in Section 4.4.3.

The CDT sampler design in Section 3.3.2 also matches the performance

requirements for this encryption design, with a significant reduction in area

consumption. Additionally, the constant run-time of the sampler means the

entire encryption scheme operates in constant-time, therefore being resilient to

side-channel timing analysis.

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 126

ARITHMETIC

KEYS SA
M

PLER

CIPHER-
TEXTS

DSP +

A0

A1

P

e3e2e1

C1a

C1b

C2

M
O

D

m

0
+

24

24

25

Fig. 4.1 High level architecture of LWE encryption scheme. Lengths are 12 bits
unless otherwise stated.

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 127

The discrete Gaussian sampling component (either Bernoulli or CDT) can be

seen as the SAMPLER component of Figure 4.1.

4.4.2 Encoding/Decoding

This stage of the encryption scheme encodes the message m ∈ {0, 1}n. Encoding

the message is necessary due to the small noise terms, et
1R1 + et

2R2 + et
3, being

present after decryption. The encoding of the message is defined such that, for

each bit m of the message m, encode(m) = m̄ := m⌊ q
2⌋ ∈ Zℓ

q. Decoding is adapted

from Lindner and Peikert [2011] and is optimised to work with unsigned integers,

hence for this research decode(m̄) := 1 if 1
4q ≤ m̄ < 3

4q, and 0 otherwise.

4.4.3 Arithmetic

The computations required for the encryption scheme are computed in the arith-

metic module, ARITHMETIC, shown in Figure 4.1. The arithmetic subsumes almost

the entirety of Algorithm 4.2, that is, the for-loop from Lines 4 to 23. Within this

loop, the value of k refers to the operation currently taking place, that is;

for k = 0 the operation c1a ≡ et
1 ×A0 + et

2 mod q,
for k = 1 the operation c1b ≡ et

1 ×A1 + et
2 mod q,

for k = 2 the operation c2 ≡ et
1 ×P + et

3 + m̄t mod q.

A DSP (DSP48A1) slice on the target Spartan-6 FPGA [Xilinx, 2011] is used

to calculate the vector-matrix MAC products as well as the addition of the error

vectors and message. Each entry in the ciphertext is computed individually,

using two clocked counters corresponding to the row and column addresses of the

matrices A0, A1, and P. Additionally, the structural decomposition of the two

vector-matrix products into three identical operations allows for ease of repetition,

meaning that the component can be re-used for computing et
1A0, et

1A1, or et
1P,

since the matrices (A0,A1,P ∈ Zn×ℓ
q) are exactly the same size. Moreover, since

4.4 Hardware Optimised Architecture of Standard-LWE Encryption 128

the arithmetic is the bottleneck of the encryption scheme, the discrete Gaussian

random number generator and message encoding can be implemented in parallel

to the MAC operations.

The MAC operations for which the DSP is used are seen in Lines 10 and

18 of Algorithm 4.2, where 256 clock cycles are required for each accumulation

computation per index of j. During which, two discrete Gaussian samples are

needed; one for the addition of the discrete Gaussian noise (seen as e in Lines 12

and 20), and the other for the error-vector store e1 for the next encryption. For

this, a double-buffered store (sometimes called the page-flip method or ping-pong

buffering) for the discrete Gaussian noise vector e1 is used within the design. The

first buffer is used to provide values for the current encryption, where the second

is used to accumulate new values.

The buffers are then swapped at the end of the encryption cycle. This buffer

minimises latency since an initial generation of e1 ← Dn
σ is only needed once (and

can be completed in parallel to the key read-in), instead of per encryption. This

double-buffered store switch and parallel discrete Gaussian sampling save 3072

clock cycles per encryption using the Bernoulli sampler [Howe et al., 2016b] and

1280 clock cycles per encryption using the CDT sampler2. The increase in area

consumption using the double-buffered store is outweighed by the reduction gains

in clock cycles.

As stated in Section 4.2.1, the modulus is changed from q = 4093 to q = 212.

This is undertaken to allow for a more optimal hardware design for encryption, as

this significantly simplifies the modular reduction calculation to selecting the 12

least significant bits from the final result. This “Modulus-Dimension Switching”

is shown by Brakerski et al. [2013] to have insignificant affect on the security of

LWE.
2These savings differ due to the CDT sampler operating with a higher throughput than the

Bernoulli sampler.

4.5 Results 129

4.5 Results

Table 4.2 shows the performance of the proposed hardware design of standard-LWE

encryption and decryption. Results are also provided for all previous research

on ring-LWE hardware designs [Göttert et al., 2012, Pöppelmann and Güneysu,

2013] and low-area ring-LWE encryption designs [Roy et al., 2014b, Pöppelmann

and Güneysu, 2014] for comparison.

The proposed hardware architectures were designed to balance area consump-

tion with throughput performance. The proposed balanced design can be seen by

the fact that only one DSP of the FPGA is utilised, but a double-buffered store

for the error-vector is used as well as two PRNGs for the Bernoulli sampler, both

of which significantly decrease latency.

Since the design was balanced, the comparisons of standard-LWE encryption

versus ring-LWE encryption [Göttert et al., 2012, Pöppelmann and Güneysu, 2013]

are the most fair, meaning that the security trade-off for adopting standard-LWE

encryption, as discussed in Section 4.2.2, can be equally explored. The choice of

comparing against the balanced ring-LWE encryption designs [Göttert et al., 2012,

Pöppelmann and Güneysu, 2013], as opposed to low-area ring-LWE encryption

designs [Roy et al., 2014b, Pöppelmann and Güneysu, 2014], was made due to the

already large area consumption required in theory. This large area consumption is

for key storage and is bounded to (3/2)n2×log2(q)-bits (1180 kilo-bits (kb)), which

is 196x larger (6 kb) than the key storage requirements for ring-LWE encryption.

Göttert et al. [2012] present the only previous research on software designs

for standard-LWE encryption, which on a Intel Core 2 Duo CPU running at 3

GHz with 4Gb of RAM, produces 1/0.01101 ≈ 90 encryptions per second and

422 decryptions per second. Hence, the proposed hardware design outperforms

4.5 Results 130

software by more than 14x in terms of encryptions per second and 10x in terms of

decryptions per second.

Currently there exists no other hardware designs of standard-LWE in the

literature. Thus, the results are compared to existing results achieved for hardware

designs of ring-LWE encryption and decryption. The comparisons are used as

a benchmark to measure the practicality of the proposed hardware designs for

standard-LWE. It must be noted that a direct comparison of ring-LWE and

standard-LWE designs is somewhat incongruous; ring-LWE schemes inherently

require much smaller key sizes and therefore are expected to consume less hardware

resources than a hardware design for standard-LWE. For instance, 73 Block RAMs

are used in this design, which includes key storage, message storage, and ciphertext

storage. Consequently, larger key sizes also have an effect on the LUTs, FFs, and

slices used. However, the results compete with many of the ring-LWE hardware

designs in terms of speed.

For cycle count and operations per second results, it should be considered that

in general 192x more calculations are needed for standard-LWE compared to ring-

LWE. Despite this, the clock cycle count of 98304 is much closer than expected

to Pöppelmann and Güneysu [2013] and Roy et al. [2014b], whilst bettering

clock cycles counts for the hardware designs by Pöppelmann and Güneysu [2014].

Achieving 1272 encryptions per second is at most around 40x less than for the

balanced designs by Pöppelmann and Güneysu [2013] and Roy et al. [2014b], but

outperforms the throughput of the low-area design by Pöppelmann and Güneysu

[2014].

Comparing results for standard-LWE decryption is difficult, since most imple-

mentations assimilate these with encryption results. However, the results compare

very well to the ring-LWE decryption results of Pöppelmann and Güneysu [2014],

whilst significantly improving upon those by Göttert et al. [2012].

4.5 Results 131

From the results, it is clear that the CDT sampler (described in Section 3.3.2)

provides the most optimal standard-LWE encryption hardware design. This is con-

trary to a previous survey [Howe et al., 2015], which concluded that the Bernoulli

sampler would be the best suited for smaller designs such as encryption. However,

the encryption results with the CDT sampler show a significant improvement from

the original approach using the Bernoulli sampler [Howe et al., 2016b], with the

results competing closer to the other ring-LWE encryption hardware designs seen

in Table 4.2.

With regards to area consumption, the size of the encryption module is

significantly affected by the size of the public-keys, that is, the matrices A0,A1,

and P. The secret-key size is 196.6 kb in the decryption module, compared to 3 kb

for ring-LWE; however since keys are 6x smaller, with decryption using 80-times

less slices and computing more than 3 decryptions per encryption, it has less

significance. The ciphertext size for standard-LWE is less than that of ring-LWE,

with standard-LWE being 4.6 kb whereas a ring-LWE ciphertext is 6.1 kb.

The area consumed by the proposed hardware architecture of standard-LWE

encryption is greater than the other low-area ring-LWE hardware designs; however

standard-LWE does not require the additional security assumptions associated

with using structured ideal lattices and still fits on a lightweight device. Thus,

there exists a trade-off in terms of security and performance when choosing between

standard-LWE and ring-LWE schemes.

4.5 Results 132

Ta
bl

e
4.

2
Po

st
-p

la
ce

an
d

ro
ut

e
re

su
lts

of
st

an
da

rd
-L

W
E

(L
W

E)
an

d
rin

g-
LW

E
(R

LW
E)

en
cr

yp
tio

n/
de

cr
yp

tio
n,

us
in

g
th

e
m

ai
n

pa
ra

m
et

er
se

t
(2

56
,4

09
6,

3.
39

),
ex

ce
pt

G
öt

te
rt

et
al

.[
20

12
],

Pö
pp

elm
an

n
an

d
G

ün
ey

su
[2

01
3]

,R
oy

et
al

.[
20

14
b]

wh
er

e
q

=
40

93
.

O
pe

ra
ti

on
&

A
lg

or
it

hm
D

ev
ic

e
L

U
T

/F
F

/S
L

IC
E

B
R

A
M

/D
SP

M
H

z
C

yc
le

s
O

ps
/s

LW
E

En
cr

yp
t

(B
er

no
ul

li
Sa

m
pl

er
)

[H
ow

e
et

al
.,

20
16

b]
S6

LX
45

60
78
/4

67
6/

18
11

73
/1

12
5

98
30

4
12

72
LW

E
En

cr
yp

t
(C

D
T

Sa
m

pl
er

)
S6

LX
45

48
57
/3

17
2/

22
03

73
/1

12
5

98
30

4
12

72
LW

E
D

ec
ry

pt
[H

ow
e

et
al

.,
20

16
b]

S6
LX

45
63
/5

8/
32

13
/1

14
4

32
76

8
43

95
R

LW
E

En
cr

yp
t

(C
D

T
-li

ke
Sa

m
pl

er
)

[G
öt

te
rt

et
al

.,
20

12
]

V
6L

X
24

0T
29

80
16
/
−
/1

43
39

6
−
/−

−
−

<
18

20
0

R
LW

E
D

ec
ry

pt
[G

öt
te

rt
et

al
.,

20
12

]
V

6L
X

24
0T

12
41

58
/
−
/6

51
74

−
/−

−
−

<
29

54
0

R
LW

E
En

cr
yp

t
(C

D
T

Sa
m

pl
er

)
[P

öp
pe

lm
an

n
an

d
G

ün
ey

su
,2

01
3]

S6
LX

16
41

21
/3

51
3/
−

14
/1

16
0

68
61

23
32

1
R

LW
E

D
ec

ry
pt

[P
öp

pe
lm

an
n

an
d

G
ün

ey
su

,2
01

3]
S6

LX
16

41
21
/3

51
3/
−

14
/1

16
0

44
04

36
33

1
R

LW
E

En
cr

yp
t

(C
D

T
Sa

m
pl

er
)

[P
öp

pe
lm

an
n

an
d

G
ün

ey
su

,2
01

3]
V

6L
X

75
T

45
49
/3

62
4/

15
06

12
/1

26
2

68
61

38
18

7
R

LW
E

D
ec

ry
pt

[P
öp

pe
lm

an
n

an
d

G
ün

ey
su

,2
01

3]
V

6L
X

75
T

45
49
/3

62
4/

15
06

12
/1

26
2

44
04

59
49

2
R

LW
E

En
cr

yp
t

(B
er

no
ul

li
Sa

m
pl

er
)

[P
öp

pe
lm

an
n

an
d

G
ün

ey
su

,2
01

4]
S6

LX
9

28
2/

23
8/

95
2/

1
14

4
13

62
12

10
57

R
LW

E
D

ec
ry

pt
[P

öp
pe

lm
an

n
an

d
G

ün
ey

su
,2

01
4]

S6
LX

9
94
/8

7/
32

1/
1

18
9

66
33

8
28

49
R

LW
E

En
cr

yp
t

(K
nu

th
-Y

ao
Sa

m
pl

er
)

[R
oy

et
al

.,
20

14
b]

V
6L

X
75

T
13

49
/8

60
/−

2/
1

31
3

63
00

49
75

1
R

LW
E

D
ec

ry
pt

[R
oy

et
al

.,
20

14
b]

V
6L

X
75

T
13

49
/8

60
/−

2/
1

31
3

28
00

10
98

90
N

T
RU

[E
nc

/D
ec

](
K

aY
o)

X
C

V
16

00
E

27
29

2/
51

60
/1

43
52

−
/−

62
−

−
EC

C
-P

22
4

(G
P)

X
C

4V
FX

12
18

25
/1

89
2/

15
80

11
/2

6
48

7
17

80
00

27
40

EC
C

-B
23

3
(R

R
M

)
X

C
5V

LX
85

T
18

09
7/
−
/5

64
4

−
/−

15
6

19
19

81
30

0

4.6 Conclusions 133

4.6 Conclusions

In this chapter, the first hardware design of a standard-LWE encryption scheme

is proposed. Since this research is the first to consider standard lattices in hard-

ware, the performance results are compared with equivalent ring-LWE encryption

designs. The results for standard-LWE encryption compete with ring-LWE en-

cryption results despite significantly larger keys, meaning many more operations

required. Larger keys means more area consumption and a slower throughput,

but considering the keys are 192x larger than compared to ring-LWE encryption,

the results for standard-LWE encryption better expected results for both area

consumption and throughput.

The proposed standard-LWE results closely competes with the ring-LWE

encryption hardware designs by Göttert et al. [2012] in terms of area consumption.

In terms of encryptions per second, the proposed hardware design also betters the

ring-LWE encryption design by Pöppelmann and Güneysu [2014]. The proposed

hardware design also outperforms the only software design of standard-LWE

encryption [Göttert et al., 2012] by more than 14x in terms of encryptions per

second and more than 10x in terms of decryptions per second.

In addition to the relative ease of parameter selection and security benefits

associated with standard-LWE (as discussed in Section 4.2.2), the design fits

comfortably on a lightweight Spartan-6 FPGA and offers comparable performance

to existing ring-LWE schemes, despite having larger key sizes and more multipli-

cation operations. Thus, due to potential security risks associated with ring-LWE

schemes, and the practical performance of the standard-LWE hardware encryption

and decryption designs illustrated in this research, standard-LWE schemes should

be considered for applications requiring long term security assurances.

4.6 Conclusions 134

Long term security applications, such as satellites, would not be able to be

reprogrammed in the field. As such, ring-LWE encryption may not be suitable

if vulnerabilities are found after the satellite has been deployed. Therefore,

standard-LWE encryption would be more suited for these types of applications.

Another key component in ensuring secure communications is a digital signa-

ture, which is used for applications such as message authentication and message

integrity. Moreover, the use of digital signatures in hardware is increasing, due to

the use of secure contact-less bank payments [Murdoch et al., 2010] and smart

cards [Rankl and Effing, 2010, p.174-178], which both require signatures for

authentication. Furthermore, hardware designs of lattice-based signatures are cur-

rently understudied, and it is therefore prudent to investigate alternatives to the

current research for efficiencies in area, speed, or both. Therefore a highly-secure,

lattice-based digital signature scheme is investigated in Chapter 5.

CHAPTER 5

Ideal Lattice-Based Digital Signatures in

Hardware

In this chapter, the hardware architectures of the ring-LWE digital signature

scheme Ring-TESLA are presented. This research demonstrates the efficiency of

a lattice-based digital signature scheme based on the ring-LWE problem (previous

hardware designs rely on NTRU and ring-SIS hardness assumptions). Ring-

LWE is described by Peikert [2014] as “a solid foundation on which to design

cryptosystems”, which also benefits from ease of parameter selection. Moreover,

NTRU currently has a number of active patents [Hoffstein et al., 2000, 2001b,

Hoffstein and Silverman, 2006, Hoffstein et al., 2007], which could cause issues

when considering a scheme in practice.

The proposed designs are compact, targeting long-term security, and low area

applications. The results in most cases significantly better the area consumption

of all previous lattice-based DSSs in hardware, whilst also remaining competitive

with regards to throughput performance. This research also investigates parameter

selection for this signature scheme, thus hardware-friendly parameters are proposed

which reduce the area consumption in comparison to the parameters proposed by

the authors. Ring-TESLA is shown to be provably secure with a tight security

5.1 Introduction 136

reduction, and it does not require on-device discrete Gaussian sampling; these

qualities make it preferable over the state-of-the-art.

5.1 Introduction

The previous chapter investigated a hardware design of a lattice-based encryption

scheme. A digital signature scheme (DSS) is another important primitive for

building secure systems and is used in most real world security protocols. Almost

all popular digital signature schemes are either based on the factoring assumption

(RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). Recently,

hardware designs of DSSs have become more widespread, with applications in a

variety of areas such as vehicle-to-everything (V2X), the Internet of Things (IoT),

and e-commerce technologies [Rupani et al., 2016, Intel, January 2017]. Intel

[January 2017] state that “FPGAs are ideally suited to performing these tasks.

They operate quickly and can be reconfigured when necessary to upgrade security

settings.” An example of this is reported by Glas et al. [2011], who propose a

FPGA V2X communication accelerator based on an ECDSA signature over 256-bit

prime fields. FPGAs are generally considered more tamper resistant than software,

and recently hackers showed vulnerabilities in Land Rover software which allowed

them to control the car’s break and engine systems [Greenberg, July 2015].

In the case of classical cryptanalytic advances or progress on the develop-

ment of quantum computers, the hardness of these closely related cryptoschemes

(RSA/DSA/ ECDSA) are seriously weakened. A potential alternative approach

is the construction of signature schemes based on the hardness of certain lattice

problems [Lyubashevsky, 2009, 2012, Güneysu et al., 2012, Dagdelen et al., 2014,

Ducas et al., 2013, Bai and Galbraith, 2014b, Alkim et al., 2015, Akleylek et al.,

2016] which are assumed to be intractable by quantum computers. As discussed

5.1 Introduction 137

in Chapter 1, in recent years lattice-based schemes have become practical and

appear to be a very viable alternative to number-theoretic cryptography.

Previous hardware designs of lattice-based DSSs, such as the GLP scheme

by Güneysu et al. [2012] and the BLISS scheme by Pöppelmann et al. [2014],

demonstrate good performance and outperform ECDSA and RSA hardware

designs. However, a significant number of hardware resources are consumed by

the costly discrete Gaussian sampler in the BLISS scheme. Additionally, these

schemes rely on extra security assumptions; GLP is based on the decisional

knapsack problem and only provides 80-bit classical security (Section 2.5.2) and

BLISS is based on a combination of NTRU and ring-SIS hardness assumptions.

These assumptions do not offer the very appealing average-case to worst-case

hardness property offered by ring-LWE. This quality renders all cryptographic

constructions based on it secure, under the assumption that worst-case lattice

problems are hard. Additionally, for both GLP and BLISS, their parameters are

not chosen directly from their security reduction, meaning their instantiations are

not provably secure.

An alternative lattice-based DSS was recently proposed by Akleylek et al.

[2016]. The proposed scheme, named Ring-TESLA, is shown to be based on

the appealing ring-LWE problem, which also does not require discrete Gaussian

sampling on-device. This DSS competes well with GLP and BLISS in software

[Akleylek et al., 2016] in terms of Sign and Verify cycle counts.

Currently, no hardware designs exists of Ring-TESLA. Applications for

hardware designs of DSSs already discussed, such as V2X and IoT, require strong

security and a high performance rate, which makes a hardware design of Ring-

TESLA on a FPGA ideal. The growth of FPGA use is also discussed in Section

1.1, for example being deployed in data centres [Freund, December 2016, Metz,

December 2016] due to the hardware and energy savings they provide, as well as

for their use in encryption and compression.

5.2 Ideal Lattice-Based Signatures 138

This chapter focuses on hardware designs of the Ring-TESLA signature and

verification algorithms. The results compete well with GLP and BLISS, showing

that for applications requiring compact or highly secure instantiations with worse-

case to average-case security, Ring-TESLA should be preferred. The proposed

architecture makes use of parallelised schoolbook polynomial multipliers with

Barrett reduction for a low-area modular multiplication component. The hardware

designs also make use of Trivium x32 (as a PRNG), a state-of-the-art hash function

(SHA-3), and a low-area multiplier specifically for low-Hamming weight (LHW)

polynomial multiplication. The overall hardware designs outperform all existing

lattice-based DSSs in hardware in terms of area consumption, and compete well

in terms of throughput.

The chapter is structured as follows: the Ring-TESLA scheme is detailed

in Section 5.2, with parameter selection discussed in Section 5.3. Section 5.4

discusses the design goals of these hardware designs, Section 5.5 then outlines

the proposed hardware designs of the signature scheme, with the results of the

hardware designs given in Section 5.6.

5.2 Ideal Lattice-Based Signatures

As previously discussed, LBC is emerging as a promising quantum-resistant

alternative to ECC or RSA, and offers efficient performance for both PKE and

DSSs. As discussed in Sections 2.2.7 and 4.2.2, for significant efficiency gains,

ideal lattices are usually used instead of standard lattices, as they allow for smaller

key sizes and faster computations by computing over a specific algebraic structure.

The ring-LWE problem [Lyubashevsky et al., 2013a], commonly used in LBC, is

well studied and demonstrates strong computational hardness.

As described in Sections 2.3 and 2.5.3, the most practical lattice-based DSSs are

based upon the Fiat-Shamir paradigm [Howe et al., 2015], such as the state-of-the-

5.2 Ideal Lattice-Based Signatures 139

art BLISS scheme by Ducas et al. [2013], which is based upon ideal lattices with

NTRU assumptions. NTRU cryptoschemes have existed for a significant period

of time, with the only current serious break in NTRU-based schemes targeting

NTRUSign [Ducas and Nguyen, 2012b]. However, the hardness assumptions of

NTRU are not related to the hardness of worst-case lattice problems, a useful

property of the ring-LWE problem [Stehlé and Steinfeld, 2011]. Accordingly, an

ideal lattice-based DSS based on the ring-LWE problem has been proposed by

Akleylek et al. [2016], named Ring-TESLA, which provides three appealing

properties:

Firstly, the scheme competes well in terms of throughput performance with

other lattice-based signatures (GLP and BLISS) in software, despite having

larger input and output sizes (see Table 2.5 in Chapter 2).

Secondly, Ring-TESLA provides a tight security reduction, a provably secure

instantiation, and worst-case hardness, which is not provided by GLP or BLISS.

If a reduction proving security is “loose,” the efficiency of the scheme is impacted,

due to a larger parameters. Moreover, cryptoschemes that have provably secure

instantiations are considered more theoretically secure [Bellare and Rogaway,

1996], especially as non-tight cryptoschemes have been shown to provide weaker

security assurances [Chatterjee et al., 2011].

Secondly, Ring-TESLA provides worst-case hardness since it is based on

the ring-LWE problem. As discussed in Section 2.2.7, this worst-case hardness

quality renders all cryptographic constructions based on it secure, under the

assumption that worst-case lattice problems are hard. In other words, breaking

the cryptographic construction implies an efficient algorithm for solving any

instance of some underlying lattice problem, such as SVP or CVP. This is not

offered by GLP or BLISS.

Thirdly, the Ring-TESLA Sign and Verify algorithms do not require on-line

discrete Gaussian sampling, and instead this can be computed off-device during

5.2 Ideal Lattice-Based Signatures 140

key generation. This minimises resource consumption, as the discrete Gaussian

component is very costly in hardware.

For example, in the BLISS hardware design [Pöppelmann et al., 2014], the

discrete Gaussian sampling module consumes ∼ 15% of the overall hardware

resources. The discrete Gaussian module is also known to be susceptible to side-

channel analysis (as discussed in Section 3.2.2), especially low-cost timing attacks,

since the samplers operate in non-constant time due to the inherent normalised

structure of the distribution.

The Ring-TESLA signature scheme is a ring-based version of the TESLA

signature scheme by Alkim et al. [2015], which originated from a signature scheme

by Bai and Galbraith [2014a] with optimisations by Dagdelen et al. [2014]. Table 5.1

shows the 128-bit parameter set provided by Akleylek et al. [2016]. The modulus

is increased from q = 39960577 to q = 51750913, as the security reduction with

the original modulus caused a slightly bigger security gap than expected1. As

discussed in Section 2.3.3, a flaw in the security reduction of Ring-TESLA was

found, post-publication. The flaw does not lead to an actual attack nor does it

affect the security of the scheme, however the specific instantiations are affected2.

The fix for this is ongoing, with attempts made by Barreto et al. [2016] and

Chopra [2016]. The authors have so far addressed these issues [Alkim et al., 2017]

for the standard lattice-based signature scheme TESLA (the standard equivalent

to the ideal lattice-based Ring-TESLA), and plan to address Ring-TESLA in

a similar fashion.

The Ring-TESLA algorithms KeyGen(1n), Signsk , and Verifypk are outlined

in Algorithms 5.1, 5.2, and 5.3. Key generation is assumed to be pre-computed

off-line. The required arithmetic components for Sign and Verify are polynomial

multiplication and addition, modular reduction, and hashing. The global parame-
1The updated modulus parameter is found on the TESLA homepage

(https://tesla.informatik.tu-darmstadt.de/de/tesla/) and was verified with the authors.
2The security flaw is also discussed on the TESLA homepage.

5.2 Ideal Lattice-Based Signatures 141

Table 5.1 The parameter sets for Ring-TESLA, as proposed by Akleylek et al.
[2016].

Parameters Ring-TESLA-I Ring-TESLA-II
Security 80-bits 128-bits

Lattice dimension n 512 512
Modulus q, (⌈log2(q)⌉) 8399873,(23) 51750913,(26)

Weight of the challenge ω 11 19
Gaussian std. dev. σ 30 52

Dropped bits d 21 23
Error threshold L 814 2766

Sign/Verify thresholds B,U 221 − 1, 993 222 − 1, 3173
Repetition rate 4.35 2.94

Secret-key size (kilo-bits) 13.82 kb 15.36 kb
Public-key size (kilo-bits) 24.58 kb 26.62 kb
Signature size (kilo-bits) 11.39 kb 18.56 kb

ters are the polynomials a1, a2
$← R×

q , (R×
q being the set of the units of Rq) which

are required for all steps in the signature scheme.

The key generation procedure is shown in Algorithm 5.1. Firstly, three discrete

Gaussian distributed polynomials are generated s, e1, e2 ← Dn
σ , with e1 and

e2 checked for validity [Akleylek et al., 2016]. Two ring-LWE polynomials are

then calculated t1 ≡ a1s + e1 mod q and t2 ≡ a2s + e2 mod q as the scheme’s

public-key (pk), with the polynomials s, e1, e2 being the scheme’s secret-key (sk).

To sign a message µ, a uniform polynomial y $← Rq,[B] is generated for use

in the calculation of the signature and for validity checks. Firstly, it is used

to calculate intermediate polynomials v1 ≡ a1y mod q and v2 ≡ a2y mod q.

Along with the message data µ, the polynomials v1 and v2 are input into the hash

function H(·), which outputs the bit-string c. This bit-string c, of length n and

Hamming weight ω, is then transformed into a low-Hamming weight polynomial

c. This is achieved by extracting the ω positions of c which are one, meaning the

n− ω zero positions are bypassed, improving latency.

5.2 Ideal Lattice-Based Signatures 142

Algorithm 5.1 Key Generation Algorithm for Ring-TESLA
procedure KeyGen(1λ, a1, a2)

s, e1, e2 ← Dn
σ

if checkE(e1) = 0 ∨ checkE(e2) = 0 then
Restart

end if
t1 ≡ a1s + e1 mod q, t2 ≡ a2s + e2 mod q
sk ← (s, e1, e2), pk ← (t1, t2)
return (sk, pk)

end procedure

Algorithm 5.2 Signing Algorithm for Ring-TESLA
1: procedure Sign(µ, a1, a2, s, e1, e2)
2: y $← Rq,[B]
3: v1 ≡ a1y mod q, v2 ≡ a2y mod q
4: c = H(⌊v1⌉d,q, ⌊v2⌉d,q, µ)
5: c = F (c)
6: z← y + sc
7: w1 ≡ v1 − e1c mod q, w2 ≡ v2 − e2c mod q
8: if [w1]2d , [w2]2d /∈ R2d−L or z /∈ RB−U then
9: Restart

10: end if
11: return (z, c)
12: end procedure

The LHW polynomial c is then used to calculate the signature z ≡ y + sc as

well as the polynomials w1 ≡ v1 − e1c mod q and w2 ≡ v2 − e2c mod q which

are used to check the validity of a signature.

The verification algorithm, shown in Algorithm 5.3, is similar to the signing

algorithm without uniform polynomial generation and the calculation of the

signature. The differences between Sign and Verify are illustrated in Table

5.2. The intermediate polynomials are calculated as w′
1 ≡ a1z− t1c mod q and

w′
2 ≡ a1z−t2c mod q, with a1z mod q and a2z mod q input into the polynomial

multiplication module and t1c and t2c calculated using a LHW multiplier. These

polynomials are then input into the hash function which outputs c′. Should the

signature size be valid, as well as c = c′, the signature is verified.

5.2 Ideal Lattice-Based Signatures 143

Algorithm 5.3 Verification Algorithm for Ring-TESLA
1: procedure Verify(µ, z, c, a1, a2, t1, t2)
2: c = F (c)
3: w′

1 ≡ a1z− t1c mod q, w′
2 ≡ a2z− t2c mod q

4: c′ = H(⌊w′
1⌉d,q, ⌊w′

2⌉d,q, µ)
5: if c = c′ and z ∈ RB−U then
6: return 1
7: else
8: return 0
9: end if

10: end procedure

Table 5.2 A comparison of the similarities between signature and verification
operations in Ring-TESLA. Polynomial multiplication and the hash function
run on the same number of operations for the same input sizes, where the LHW
multiplier requires three computations for signing and only two for verification.

Ring-TESLA Modules Sign Verify

Polynomial Multiplication a1y mod q a1z mod q
a2y mod q a2z mod q

Keccak Hash Function c′ ← H(·) c′′ ← H(·)

LHW Multiplication
sc -

e1c mod q t2c mod q
e2c mod q t1c mod q

5.3 Parameter Selection for Ring-TESLA 144

5.3 Parameter Selection for Ring-TESLA

The parameters for the Ring-TESLA signature scheme are already provided in

Table 5.1 and were derived by the authors. The way in which the Ring-TESLA

parameters are derived is described by Akleylek et al. [2016], Essentially, since

the signature scheme is proven to be as hard as ring-LWE, the bit-security of

the parameters can be calculated by LWE attacks3. The most efficient practical

approaches to solving LWE are the embedding approach and the decoding attack.

This will now be briefly described.

For the decoding attack, a LWE instance (A,As + e) is considered as an

instance of the bounded distance decoding problem (BDD). The attack first

utilises a lattice reduction algorithm, such as the BKZ algorithm [Chen and

Nguyen, 2011], and then uses the nearest plane algorithm proposed by Lindner

and Peikert [2011] to find the closest vector (As) to a target vector.

The embedding attack reduces a LWE instance to an instance of the shortest

vector problem (SVP). The technique by Albrecht et al. [2013] is then used to

define a lattice that contains the error term of a LWE instance. The short error

term (a shortest vector) of the constructed lattice in then found via basis reduction

techniques such as BKZ.

The embedding attack and decoding attack analysis is shown in Figure 5.1.

Parameter selection analysis was undertaken to find hardware-friendly parameters

for Ring-TESLA. The inputs to these lattice attack algorithms are the parameters

(n, q, σ), with the remaining parameters derived from these. For parameter

selection in this case, the value of n is fixed to n = 512, the value of σ is looped
3The ring-LWE problem is an instantiation of the LWE problem, hence the hardness of

ring-LWE (and thus Ring-TESLA) can be calculated by attacks against LWE

5.3 Parameter Selection for Ring-TESLA 145

over the values σ ∈ {1, 2, . . . , 150}, and finally the prime modulus is output4 with

the achieved bit-security versus the two attacks.

The parameter selection analysis results are shown in Figure 5.1, which shows

plots of the bit-security levels from the embedding attack (blue) and the decoding

attack (red), for all values of σ. A 128-bit reference line is also added, as this is

the target security level in this research, which also matches the security of the

proposed parameters by Akleylek et al. [2016]. A modulus (q) is output which is

associated with a given σ, the plot shows the Hamming weight of this modulus

(in black). Interestingly, there is a correlation between the LWE bit-security and

the Hamming weight of the modulus. As σ increases, the bit-security of the two

attacks also expectedly increases, however there are four major peaks on these

plots. These peaks correspond to prime number changes, however as seen by the

black Hamming weight line, these peaks are also low Hamming weight primes. At

the same time as a drop in the black Hamming weight line, there is also a sharp

rise in the bound B, which bounds the size of q. Due to the rise in B, the modulus

q is permitted to be smaller and close to a power of 2. This correlation allows

for smaller parameters in comparison to those proposed by Akleylek et al. [2016].

The proposed hardware-friendly parameter set (Ring-TESLA-HW) achieves

128-bit security and low Hamming weight modulus, using the LWE parameters

n = 512, σ = 35, and q = 16780289, and is shown in Table 5.3.

Using low Hamming weight parameters within cryptography is not new; it

is used within RSA and ECC [Hoffstein and Silverman, 2003], the NTRU cryp-

toscheme [Hoffstein and Silverman, 2001], and fully homomorphic encryption [Cao

et al., 2016]. Low Hamming weight primes are also used within lattice-based

digital signature schemes such as BLISS (q = 12289 = 110000000000012). The

proposed hardware-friendly parameters are shown in Table 5.3. Compared to the
4The modulus output is based on a theoretical bound by Akleylek et al. [2016], which

depends on σ and the target security level, in this case 128-bits.

5.4 Design Goals and Multipliers 146

Table 5.3 The hardware-friendly parameter set derived for Ring-TESLA, as
well as the proposed parameters by Akleylek et al. [2016]. Both provide 128-bit
classical security.

Parameters Ring-TESLA-II Ring-TESLA-HW
Security 128-bits 128-bits

Lattice dimension n 512 512
Modulus q, (⌈log2(q)⌉) 51750913,(26) 16780289,(25)

Weight of the challenge ω 19 19
Gaussian std. dev. σ 52 35

Dropped bits d 23 22
Error threshold L 2766 1862

Sign/Verify thresholds B,U 222 − 1, 3173 222 − 1, 2136
Repetition rate 2.94 2.5

Secret-key size (kilo-bits) 15.36 kb 13.82 kb
Public-key size (kilo-bits) 26.62 kb 25.6 kb
Signature size (kilo-bits) 18.56 kb 18.56 kb

Ring-TESLA-II parameters proposed by Akleylek et al. [2016], the modulus

bit length is reduced, which reduces all operand sizes whilst retaining the same

128-bit security level. The next significant changes are in reducing the key and

signature sizes, as well as bettering the repetition rate. The implications of the

hardware-friendly parameters are shown in Tables 5.4 and 5.5.

5.4 Design Goals and Multipliers

As described in Section 5.1, the main design aim of this research is for compactness,

that is consuming less area in comparison to the state-of-the-art. Low-area is a

common hardware design goal, which has also been merged into other hardware

designs of LBC [Roy et al., 2013a, 2014b, Aysu et al., 2013, Pöppelmann and

Güneysu, 2014]. For ideal LBC in general, the polynomial multiplication technique

almost always employed is the number theoretic transform (NTT), which is essen-

tially a fast Fourier transform (FFT) over the integers modulo q. A background

on NTT polynomial multiplication used within LBC is given in Section 2.6.1. In

general, the reason NTTs are preferred is due to the gain in operational run-times

5.4 Design Goals and Multipliers 147

10 20 30 40 50 60 70 80 90 100 110 120 130 140 1500

50

100

150

200

128

Standard Deviation (σ)

B
it

Se
cu

ri
ty

L
ev

el

Embedding Attack Decoding Attack

5

10

15

20

H
W

(q
)

Modulus Hamming Weight

Fig. 5.1 Graphical representation of parameter selection for Ring-TESLA. Secu-
rity levels provided are via the outputs of the embedding attack and the decoding
attack. Also added is a reference line for 128-bits, as well as the hamming weight
of the modulus associated with the standard deviation along the x-axis.

from the improvement from quadratic to quasi-linear computational complexity.

Additionally, the NTT component also includes the modulo reduction calculation.

However, the gains made in efficiency do come with a number of conditions.

Firstly, the NTT multipliers work over a NTT domain, meaning values need to

be converted in and out of this domain for calculations. This is an issue for

components such as the discrete Gaussian sampler (or even addition/subtraction),

as well as issues for public-key or secret-key inputs to the multiplier, which do

not work in this domain.

Secondly, the NTT causes problems when considering parameter selection

for LBC. Parameter selection is still an open problem in LBC, and NTT is only

applicable if n is a power of two and q is a prime satisfying q ≡ 1 mod 2n, meaning

two of the three security parameters (n, σ, q) are already fixed, giving significant

restrictions on parameter selection. Moreover, it is still an open problem if the

choice of multiplicative ring affects the security of a LBC scheme [Lyubashevsky,

2016].

5.4 Design Goals and Multipliers 148

Thirdly, designing a NTT multiplier is non-trivial, and it is usually designed to a

specific parameter set to give the best performance. Should a certain parameter set

become insecure or a practitioner require scalability, the NTT becomes impractical.

This is echoed by Bernstein et al. [2016], arguing alternatives to NTTs should be

investigated.

Fourthly, it is not known if the NTT multiplication is susceptible to timing

side-channel analysis. Since the run-time of the NTT is usually non-constant,

simple timing analysis could give away secret-key information.

Finally, the NTT is the most area consuming hardware component in LBC.

For example, in the hardware design of BLISS, the NTT multiplier consumes

on average 42% of the hardware resources utilised for signing, similarly 62% for

verifying.

Exploring an alternative for polynomial multiplication is therefore important

and is thus investigated in this research. The main polynomial multiplication in

this research is calculated using Comba multiplication [Comba, 1990] and Barrett

modular reduction [Barrett, 1986]. Overall the combination produces a complete

modular multiplication component, applicable for polynomial multiplication over

Rq for LBC. In comparison to the NTT, it utilises significantly less hardware

resources, meaning a number of parallel multipliers were able to be used to

produce several speed variants. The modular multiplication component also offers

versatility, meaning the security parameters (n, σ, q) no longer need to be fixed.

Moreover, the design is scalable for use with many other parameter sets with little

area overhead. For the large area increase however, the NTTs do benefit from

higher throughput performance. Additionally, the structured, constant run-time

of the Comba multiplier would bypasses any timing analysis. The results of the

proposed modular multiplication modules are compared to the NTT in Table 5.4.

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 149

Fig. 5.2 A block diagram of the proposed hardware design for Ring-TESLA Sign.

5.5 Design of Hardware Modules for Ring-TESLA

Signing and Verifying

In this section, hardware designs for the Sign and Verify algorithms of the Ring-

TESLA DSS are proposed. At a high level and as shown in Table 5.2, the main

algorithmic components for both signing and verifying are a polynomial multiplier,

a hash function, and a low Hamming weight (LHW) multiplier. Figure 5.2

illustrates the proposed hardware design of the Ring-TESLA signing algorithm.

The hardware design for verification is shown in Figure 5.6 and is adapted from

the proposed Sign hardware design.

The designs of the Sign and Verify hardware architectures of the Ring-TESLA

lattice-based DSS target the Xilinx Spartan-6 FPGA. The research in this chapter

is a contribution of separate signing and verifying hardware designs, which both

offer compact designs with a variety of performance results. Figure 5.3 shows

a high-level overview of the finite-state machine (FSM) of the Ring-TESLA

signing hardware design, with details of the polynomials output from those states.

Similarly, the Ring-TESLA verification FSM overview is shown in Figure 5.4.

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 150

Initial-

⇒

PRNG, Polynomial

⇒

Keccak

⇒

LHW

⇒ (z, c)
isation Multiplication, and Hash Polynomial
(µ,a1, Modulo Reduction Function Multiplication
a2,sk) (y, v1, v2) (c, c) (z, w1, w2)

Fig. 5.3 A high-level overview of the hardware design of the signing algorithm of
Ring-TESLA, showing the main stages of the finite state machine.

Initial-

⇒

Polynomial

⇒

LHW

⇒

Keccak

⇒ 0 ∨ 1
isation Multiplication, and Polynomial Hash
(µ,z, c′, Modulo Reduction Multiplication Function

a1, a2,pk) (a1z, a2z) (t1c, t2c) (c′′)

Fig. 5.4 A high-level overview of the hardware design of the verification algorithm
of Ring-TESLA, showing the main stages of the finite state machine.

As well as polynomial multiplication, the hardware designs also include the use

of a post-quantum secure hash function, a low-area LHW polynomial multiplier,

and fast rejection components. Both architectures operate in a pipelined manner

(Figure 5.5), such that the critical path is reduced to only the initial polynomial

multiplications of v1 and v2 (similarly, a1z and a2z for verify). Section 5.5.1

describes the hardware modules that uphold the Sign and Verify architectures,

with these overall hardware designs outlined in Section 5.5.2.

5.5.1 Hardware components

Polynomial multiplication is the most expensive module required in the proposed

designs in terms of clock cycle count. The most commonly chosen method for

modular polynomial multiplication is the number theoretic transform (NTT),

which offers fast performance and incorporates the reduction modulo q. However,

as discussed in Section 5.4, it is costly in terms of hardware resource usage and

there are significant restrictions on the parameter selection when a NTT multiplier

is used. Alternatively, traditional multiplication techniques can be employed to

carry out the polynomial multiplication operations, which are more compact but

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 151

incur an additional latency cost. An additional modular reduction module is also

then required.

For the proposed designs, the polynomial multiplication is carried out using

a variant of schoolbook multiplication, known as Comba multiplication [Comba,

1990], which achieves an improvement in performance by combining carry handling

and reducing write access to memory. The Comba multiplier is particularly suitable

for FPGA devices and can exploit the fast arithmetic within the DSP units

[Güneysu, 2011]. The multiply-and-accumulate (MAC) operations are computed

within each DSP slice until the inner products of the schoolbook multiplier are

complete. This approach was particularly attractive since the technique is not

restricted by the parameters of Ring-TESLA.

For the modular reduction operation, Barrett modular reduction is employed

[Barrett, 1986]. Any generic modulus can be used within Barrett reduction, with

only one pre-computation required. Two multiplication units with a maximum of

two subtractions are needed in Barrett reduction [Dhem, 1998]. In the proposed

designs, an individual Comba multiplier is reused a number of times to carry out

the modular reduction. The combination of Comba multiplication and Barrett

reduction create an overall generic modular multiplication module, which multiplies

polynomials over the ring Rq.

The SHA3 hash function, Keccak, is chosen for the hashing in the proposed

Ring-TESLA designs, due to its speed in hardware as well as its post-quantum

security [Amy et al., 2016].

A LHW polynomial multiplication module is also designed to compute on the

LHW output of the hash function. The LHW multiplier, used in both the Sign

and Verify architectures, uses the column-wise schoolbook technique, since the

LHW calculations only require a small amount of shift and adds. Column-wise

is preferred over row-wise as it requires less storage; this is due to column-wise

concentrating on a single output of the resulting polynomial rather than all

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 152

outputs simultaneously. Hence, incorporating column-wise complements the

overall compact design. For LHW calculations, the authors of Ring-TESLA

suggest a hybrid NTT/sparse polynomial multiplier, but this would incur a

higher cost in hardware resource consumption, and since the LHW calculations

are independent of the critical path a low-area (column-wise schoolbook) LHW

polynomial multiplier is used.

5.5.2 Signing and Verifying Hardware Designs

Figure 5.2 shows the hardware architecture of the Ring-TESLA signing algorithm.

Two dual-port 18 Kb block RAMs (BRAM18) are used to store the global constants

a1 and a2, which are read-in during the initialisation stage (seen in Figure 5.3).

Also during initialisation, an unrolled x32 Trivium component is used to generate

uniform random bits for the polynomial y $← Rq,[B].

For polynomial multiplication, the input of the polynomial y, as well as the

input of the polynomials a1 and a2, is controlled by two counters which increment

on the ready signal of the modular multiplication component. The global constant

polynomial selection (that is, a1 or a2) is controlled by the FSM. Once each

element of v1 and v2 is output from the modular multiplication module, the d

least significant bits of each are stored in RAM for use in the hash function, where

the full values are also stored for use in the rejection stage.

The encoding function F (c) uses the same technique as used by Güneysu et al.

[2012], which is also suggested by the authors of Ring-TESLA. The 160-bit

string output (c) of the hash function is considered 5-bits at a time; c1c2c3c4c5.

If the leading bit c1 is 1, then a value of 1 is put in position c2c3c4c5 (this 4-bit

value is read as a number between 0 and 15) of a 16-digit string. This converts

the 160-bit hash output into a 512-bit string. The 512-bit string is then converted

to a LHW polynomial by storing the positions which are 1. This prior knowledge

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 153

of a LHW polynomial allows the use of a LHW polynomial multiplier, which only

computes for values which are non-zero. The discrete Gaussian distributed (Dσ)

secret-keys s, e1, e2 are also LHW since, for instance, the probability a sample

x← Dσ also satisfies x ∈ {−100, 100} (thus 6-7 bits in length) is around 95%.

The LHW polynomial c is an input into every LHW computation. This

includes the calculation of the ciphertext z ≡ y + sc, and the variables used

to accept or reject the signature, w1 ≡ v1 − e1c mod q and w2 ≡ v2 − e2c

mod q. The LHW polynomial multiplier exploits the fact that the hash output

polynomial c has only ω = 19 elements equal to a one, and (n− ω) = 493 zero

elements. For simplicity, the LHW polynomial c is expressed by the positions

with an element equal to one. This saves on run-time by automatically ignoring

all zero coefficient, which for these parameters make up 96% of c. Once the LHW

multiplier has calculated the signature polynomial z, the polynomials w1 and w2

are then calculated sequentially.

Once a coefficient is output from the LHW multiplier, it is processed by the

rejecter, which checks whether its size is valid for output. Rejecting a signature

element-wise is preferable to minimise run-time.

The secret-key values (s, e1, and e2) are stored in a single-port distributed

RAM. Then, for each element in s, e1, and e2, the multiplier accumulates the inner

products using a MAC unit. Once each column-wise element is calculated, it is

added/subtracted to/from the corresponding values in v1, v2, or y′, and the final

values are checked with their rejection conditions seen in line 8 in Algorithm 5.2

(similarly line 5 in Algorithm 5.3), where only the signature z and hash-string c

are stored. This approach is advantageous since the rejection validity is calculated

instantly and in parallel to the next LHW element calculation.

Both the Sign and Verify architectures operate in two pipelined stages (pipeline

illustrated in Figure 5.5), due to the latency of the calculations of v1 and v2. For

the first signature, y is generated during initialisation when the global constants

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 154

Signature ♯1 Poly. Mult. ⇒ Hash ⇒ LHW
Signature ♯2 Poly. Mult. ⇒ Hash ⇒ LHW

... . . .
Signature ♯n Poly. Mult. ⇒ Hash ⇒ LHW

Fig. 5.5 A high-level overview of the pipeline incorporated within the sign (and
verify) algorithm of Ring-TESLA.

are read in, with an additional y′ polynomial (see Figure 5.2) generated during

the calculation of v1 and v2. Once these calculations have finished, y is swapped

with y′, so the calculations of v1 and v2 for the next signature can begin again.

This removes the hashing and LHW calculations from the critical path and cycle

count, as well as savings for generating a new polynomial y.

Verify

Verification (shown in Figure 5.6) operates in a similar fashion to signing, with

differences mainly seen in the FSM, seen in Figure 5.4. Verification, as in signing,

includes (for the same bit lengths) polynomial multiplication and modular reduc-

tion, a hash function, and LHW polynomial multiplication. The Comba/Barrett

polynomial multiplier calculates a1z mod q and a2z mod q, with a1, a2, and z be-

ing stored in BRAM. As with signing, the resulting values are stored in single-port

distributed RAM and are updated after subtraction with the LHW calculations

of t1c and t2c. The final results are input into the hash function, where the

signature is validated if the hash value matches the hash-string input from the

signature. The similarities between signing and verifying for Ring-TESLA can

be seen more explicitly in Table 5.2.

5.5.3 Parallelised multipliers for accelerated performance

A number of hardware designs are proposed for the Ring-TESLA Sign and Verify

algorithms that offer a trade-off between area and performance. The lowest area

5.5 Design of Hardware Modules for Ring-TESLA Signing and Verifying 155

Fig. 5.6 A block diagram of the proposed hardware design for Ring-TESLA
Verify. Global parameters are stored in BRAM18.

designs, named SB-I Sign and SB-I Verify, offer reduced area consumption at the

cost of additional latency. In these designs, a standard Comba multiplier with one

Barrett modular reduction unit is employed. The Barrett modular reduction unit

is carried out in parallel while the Comba multiplier is used to minimise latency

of the modular multiplication unit. These designs target low area applications,

where a slower performance may be acceptable.

The bottleneck in Ring-TESLA is polynomial multiplication. Three addi-

tional designs are proposed to enhance the practicality, whereby the polynomial

multiplication unit is optimised. To improve latency multiple Comba multipliers

are employed in parallel, exploiting the FPGA DSP slices, which increases area

consumption. These are named SB-II, SB-IV, and SB-VIII, which reflect the

number of parallel Comba multipliers within each design (that is, two, four, and

eight parallel multipliers). To minimise latency, in all proposed designs only one

modular reduction is employed, running in parallel with the multiple Comba

multiplier units. Overall, each polynomial multiplier requires 2 DSPs, with the

modular reduction component requiring 4 DSPs.

Table 5.4 shows the hardware resource usage and clock cycle count of the

proposed modular multipliers for polynomial multiplication within Ring-TESLA.

5.6 Results 156

Table 5.4 Post-place and route results of the proposed modular multiplication unit,
targeting a Spartan-6 (S6) LX25 FPGA. Parameters used are (n, q), with two
results for the same multiplier with the original Ring-TESLA parameters (with
q = 51750913) and for the hardware-friendly set (with q = 16780289). BLISS
NTT results provided for comparison, GLP multiplier results are not available.
Results are also provided from the polynomial multipliers by Pöppelmann and
Güneysu [2012] (PG), Aysu et al. [2013] (APS), and Du and Bai [2016] (DB).
Results by Du and Bai [2016] do not provide the modulus used, but it is assumed
to be 65537. Results with F indicate multipliers that use Fermat primes.

Mult. Type Parameters (n, q) Device LUT/FF/SLICE BRAM/DSP MHz Cycles Ops/s
SB-I (512,51750913) S6LX25 1016/790/317 0/6 192 917504 210
SB-I (512,16780289) S6LX25 990/772/316 0/6 192 917504 210
SB-II (512,51750913) S6LX25 1357/1162/395 0/8 196 458752 428
SB-II (512,16780289) S6LX25 1251/1103/373 0/8 196 458752 428
SB-IV (512,51750913) S6LX25 2374/1731/560 0/12 190 229376 829
SB-IV (512,16780289) S6LX25 2226/1664/516 0/12 190 229376 829
SB-VIII (512,51750913) S6LX25 3488/2637/880 0/20 188 114688 1640
SB-VIII (512,16780289) S6LX25 3216/2489/804 0/20 188 114688 1640

NTTF-PG (512,65537) S6LX100 1585/1205/615 4/1 196 10014 19572
NTT-PG (512,5941249) S6LX100 3228/2263/1145 7/4 193 10174 18969
NTT-BLISS (512,12289) S6LX25 2557/2707/835 5/1 145 9307 15579
NTTF-APS (512,65537) S6LX100 490/532/211 2/2 184 > 12800 < 14375
NTTF-APS (512,65537) S6LX100 632/535/256 2/3 224 > 12800 < 17500
NTTF-DB (512,65537) S6LX100 562/562/239 4/1 196 10014 19572

Clock cycle counts are given for the multiplication of one polynomial, with

n = 512. Table 5.4 also provides NTT results, where available, for comparison. It

should be noted that NTT multipliers are significantly more efficient when Fermat

(NTTF) [Agarwal and Burrus, 1974] or Mersenne [Rader, 1972] primes are used, in

comparison to other prime numbers. This is due to simplifications, such as shifting

used in the butterfly unit (instead of multiplication), no storage requirements for

twiddle factors, and simpler modular reduction [Baktir and Sunar, 2006, Blahut,

2010b].

5.6 Results

The proposed architectures are implemented using the Xilinx ISE Design Suite

14.7 synthesis tool. The target device is a Xilinx Spartan-6 FPGA (S6 LX25).

Table 5.5 shows the post-place and route (PAR) results for the proposed hardware

5.6 Results 157

designs of both Sign and Verify of the Ring-TESLA signature scheme. These

designs fit comfortably on the low end FPGA. As expected, the optimised designs

(SB-II, SB-IV, and SB-VIII) have reduced latency in comparison to SB-I, at the

cost of additional area usage. Results indicate that up to 785 operations per

second for Sign and 776 operations per second for Verify can be achieved by the

proposed designs, with an associated low area cost.

The proposed designs are compared to the hardware designs of existing DSSs;

currently used in practice (RSA/ECDSA) and alternative lattice-based algorithms

(GLP and BLISS), as seen in Table 5.5. The variety of results for the proposed

hardware designs stems from changes in the FSM (Figure 5.3), scheduling, and

the integration of multiple polynomial multiplication modules.

5.6 Results 158

Ta
bl

e
5.

5
R

es
ul

ts
of

th
e

pr
op

os
ed

ha
rd

wa
re

de
sig

ns
fo

r
R

in
g-

T
E

SL
A

w
ith

12
8-

bi
t

pa
ra

m
et

er
s

pr
op

os
ed

by
[A

kl
ey

le
k

et
al

.,
20

16
](

R
in

g-
T

E
SL

A
-I

I)
an

d
th

e
on

es
ge

ne
ra

te
d

in
th

is
re

se
ar

ch
(R

in
g-

T
E

SL
A

-H
W

).
A

lso
ad

de
d

is
a

su
m

m
ar

y
of

ot
he

r
D

SS
s,

in
cl

ud
in

g
G

LP
-I

[G
ün

ey
su

et
al

.,
20

12
],

B
LI

SS
-I

[P
öp

pe
lm

an
n

et
al

.,
20

14
],

R
SA

,a
nd

EC
D

SA
[G

la
s

et
al

.,
20

11
](

re
su

lts
ta

ke
n

fro
m

[P
öp

pe
lm

an
n

et
al

.,
20

14
]).

O
pe

ra
ti

on
,

C
on

fig
ur

at
io

n
Se

cu
ri

ty
D

ev
ic

e
LU

T
/F

F
/S

LI
C

E
B

R
A

M
/D

SP
M

H
z

C
yc

le
s

O
ps

/s
ec

O
ps

/s
ec

/S
R

in
g-

T
E

SL
A

-I
I

(S
ig

n,
SB

-I
)

12
8-

bi
ts

S6
LX

25
44

47
/3

34
5/

12
57

3/
6

19
0

18
35

54
0

10
4

0.
08

R
in

g-
T

E
SL

A
-I

I
(S

ig
n,

SB
-I

I)
12

8-
bi

ts
S6

LX
25

48
28

/3
79

0/
15

13
4/

8
19

6
91

77
71

21
4

0.
14

R
in

g-
T

E
SL

A
-I

I
(S

ig
n,

SB
-I

V
)

12
8-

bi
ts

S6
LX

25
50

71
/3

85
1/

15
03

4/
12

18
7

45
88

91
40

8
0.

27
R

in
g-

T
E

SL
A

-I
I

(S
ig

n,
SB

-V
II

I)
12

8-
bi

ts
S6

LX
25

68
48

/5
45

7/
22

54
4/

20
18

0
22

94
46

78
5

0.
35

R
in

g-
T

E
SL

A
-I

I
(V

er
ify

,S
B

-I
)

12
8-

bi
ts

S6
LX

25
37

14
/3

02
3/

11
72

3/
6

18
8

18
35

54
0

10
2

0.
09

R
in

g-
T

E
SL

A
-I

I
(V

er
ify

,S
B

-I
I)

12
8-

bi
ts

S6
LX

25
39

17
/3

25
3/

12
38

3/
8

19
4

91
77

71
21

2
0.

16
R

in
g-

T
E

SL
A

-I
I

(V
er

ify
,S

B
-I

V
)

12
8-

bi
ts

S6
LX

25
47

93
/3

93
9/

15
51

3/
12

18
6

45
88

91
40

6
0.

25
R

in
g-

T
E

SL
A

-I
I

(V
er

ify
,S

B
-V

II
I)

12
8-

bi
ts

S6
LX

25
64

73
/5

58
2/

21
03

3/
20

17
8

22
94

46
77

6
0.

37
R

in
g-

T
E

SL
A

-H
W

(S
ig

n,
SB

-I
)

12
8-

bi
ts

S6
LX

25
38

60
/2

82
0/

12
20

3/
6

19
0

18
35

54
0

10
4

0.
08

R
in

g-
T

E
SL

A
-H

W
(S

ig
n,

SB
-I

I)
12

8-
bi

ts
S6

LX
25

41
85

/3
17

5/
11

47
4/

8
19

6
91

77
71

21
4

0.
19

R
in

g-
T

E
SL

A
-H

W
(S

ig
n,

SB
-I

V
)

12
8-

bi
ts

S6
LX

25
47

22
/3

72
9/

14
38

4/
12

18
7

45
88

91
40

8
0.

28
R

in
g-

T
E

SL
A

-H
W

(S
ig

n,
SB

-V
II

I)
12

8-
bi

ts
S6

LX
25

63
31

/5
23

0/
21

55
4/

20
18

0
22

94
46

78
5

0.
36

R
in

g-
T

E
SL

A
-H

W
(V

er
ify

,S
B

-I
)

12
8-

bi
ts

S6
LX

25
34

57
/2

59
3/

11
46

3/
6

18
8

18
35

54
0

10
2

0.
09

R
in

g-
T

E
SL

A
-H

W
(V

er
ify

,S
B

-I
I)

12
8-

bi
ts

S6
LX

25
36

63
/2

79
6/

12
10

3/
8

19
4

91
77

71
21

2
0.

16
R

in
g-

T
E

SL
A

-H
W

(V
er

ify
,S

B
-I

V
)

12
8-

bi
ts

S6
LX

25
43

94
/3

35
2/

14
73

3/
12

18
6

45
88

91
40

6
0.

27
R

in
g-

T
E

SL
A

-H
W

(V
er

ify
,S

B
-V

II
I)

12
8-

bi
ts

S6
LX

25
61

13
/4

76
1/

21
03

3/
12

17
8

22
94

46
77

6
0.

37
G

LP
(S

ig
n,

Sc
ho

ol
bo

ok
x3

)
80

-b
its

S6
LX

16
74

65
/8

99
3/

22
73

30
/2

8
16

2
-

93
1

0.
41

G
LP

(V
er

ify
,S

ch
oo

lb
oo

k
x3

)
80

-b
its

S6
LX

16
62

25
/6

66
3/

22
63

15
/8

15
8

-
99

8
0.

44
B

LI
SS

(S
ig

n,
N

T
T

)
12

8-
bi

ts
S6

LX
25

71
93

/6
42

0/
22

91
6/

5
13

9
15

86
4

87
61

3.
82

B
LI

SS
(V

er
ify

N
T

T
)

12
8-

bi
ts

S6
LX

25
50

65
/4

31
2/

16
87

4/
3

16
6

16
34

6
17

10
1

10
.1

4
R

SA
(S

ig
n)

10
3-

bi
ts

V
5

LX
30

32
37

sli
ce

s
7/

17
20

0
-

89
0.

03
EC

D
SA

(S
ig

n)
12

8-
bi

ts
V

5
LX

11
0

32
29

9
LU

T
/F

F
pa

irs
10

/3
7

13
9

-
-

-
EC

D
SA

(V
er

ify
)

12
8-

bi
ts

V
5

LX
11

0
32

29
9

LU
T

/F
F

pa
irs

10
/3

7
11

0
-

-
-

5.6 Results 159

The Ring-TESLA results significantly outperform the comparable classical

results for RSA and ECDSA. The RSA hardware design is bettered in terms of

operations per second, with Ring-TESLA providing significantly more security

(103-bits vs. 128-bits). In comparison to ECDSA, the proposed hardware designs

are significantly lower in FPGA area consumption, using less BRAMs and DSPs,

and also operating at a much higher frequency.

The proposed designs also compete with existing lattice-based DSSs. The

GLP Sign hardware design is significantly larger than even the largest design

for Ring-TESLA Sign (SB-VIII), additionally consuming more than 7x more

BRAMs and 8 more DSPs, whilst operating at a lower frequency. These results

are also echoed when comparing the Verify results for GLP and Ring-TESLA,

with Ring-TESLA consuming less FPGA area resources, 5x less BRAMs, and

operating with a higher frequency. Ring-TESLA also provides more bit security

than GLP, with GLP only providing 80-bit security compared to 128-bit with

Ring-TESLA. Operations per second results are in general better for GLP

compared to Ring-TESLA.

Compared to the BLISS Sign architecture, all proposed Ring-TESLA hard-

ware designs offer more compact hardware designs. Most of the Verify designs

for Ring-TESLA also compete with BLISS in terms of area consumption (all

except SB-VIII). This is despite the much larger parameters for Ring-TESLA in

comparison to BLISS; with the lower bit-lengths in BLISS (14-bits) the hardware

designs are able to exploit DSPs (maximum 18-bits) on the Spartan 6 [Xilinx,

2011]. Additionally, BLISS requires one polynomial multiplication calculation per

signature or verification, with Ring-TESLA requiring two. After using 8 parallel

multipliers for Ring-TESLA SB-VIII, the area saving benefits are lost and NTT

becomes favourable in terms of area and throughput performance. Due to the

usage of the NTT in BLISS, the operations per second is significantly higher in

5.7 Conclusion 160

comparison to Ring-TESLA, this can also be seen in the much lower clock cycle

counts. Both schemes offer 128-bit security.

Generating hardware-friendly parameters was a option due to Ring-TESLA

being based on ring-LWE. The hardware-friendly parameters generated meant

that the architecture is more compact in comparison to the original parameter set.

These savings were mainly gained by a change in modulus, which is more than 3x

smaller and importantly 25-bits instead of 26-bits. This has meant operands sizes

are slightly smaller throughout the entire design, thus hardware resource savings

are seen in all areas of the architecture. This is illustrated in Figures 5.7 and 5.8,

which show the FPGA hardware resource consumption for the original parameter

set (Ring-TESLA-II) and the hardware friendly parameter set (Ring-TESLA-

HW). The results also show that, as hardware resource consumption increases

with additional multipliers, throughput similarly improves.

5.7 Conclusion

In this chapter, low area hardware designs of signing and verifying for a lattice-

based DSS is proposed. The DSS is Ring-TESLA, a more secure lattice-based

scheme compared to previous research (GLP/BLISS), at the cost however of

larger parameters and twice as many multiplications.

Two separate hardware designs have been presented which perform the Sign

and Verify operations of Ring-TESLA. Furthermore, each hardware design

offers variations in performance as they exploit one, two, four, or eight parallel

polynomial multipliers. The design goal of these hardware designs are for low-area,

with even the most area expensive design (which utilises 8 multipliers) lower in

area consumption than the state-of-the-art. Indeed, the area resource consumption

of the proposed designs is less than the state-of-the-art with regards to LUTs, FFs,

and slices as well as BRAM and DSP usage. This is despite the larger parameter

5.7 Conclusion 161

SB-1 SB-2 SB-4 SB-8
0

2,000

4,000

6,000

104

214

408

785

(a) Ring-TESLA-II Sign

H
ar

dw
ar

e
R

es
ou

rc
e

A
m

ou
nt LUT

FF
Slices
Throughput

SB-1 SB-2 SB-4 SB-8
0

2,000

4,000

6,000

104

214

408

785

(b) Ring-TESLA-HW Sign

H
ar

dw
ar

e
R

es
ou

rc
e

A
m

ou
nt LUT

FF
Slices
Throughput

Fig. 5.7 A graphical depiction of the hardware resource consumption of the
proposed Ring-TESLA Sign architecture, provided for all parallel multiplier
options.

5.7 Conclusion 162

SB-1 SB-2 SB-4 SB-8
0

2,000

4,000

6,000

103

200

395

776

(a) Ring-TESLA-II Verify

H
ar

dw
ar

e
R

es
ou

rc
e

A
m

ou
nt LUT

FF
Slices
Throughput

SB-1 SB-2 SB-4 SB-8
0

2,000

4,000

6,000

103

200

395

776

(b) Ring-TESLA-HW Verify

H
ar

dw
ar

e
R

es
ou

rc
e

A
m

ou
nt LUT

FF
Slices

Throughput

Fig. 5.8 A graphical depiction of the hardware resource consumption of the
proposed Ring-TESLA Verify architecture, provided for all parallel multiplier
options.

5.7 Conclusion 163

sizes of Ring-TESLA in comparison to alternative lattice-based DSSs, GLP and

BLISS. Additionally, Ring-TESLA has the appealing qualities of worst-case

hardness. Hardware-friendly parameters were also generated to further reduce the

area consumption of the Ring-TESLA hardware designs.

Post-publication, a security flaw was found in the Ring-TESLA signature

scheme. As already discussed, this does not lead to an actual attack on the scheme.

The proposed hardware design is significantly more generic than other lattice-

based signature hardware designs, mainly due to the use of a generic polynomial

multiplier. Considering that this flaw will likely be fixed by the authors, a generic

hardware design will mean a significantly faster turn-around for updating the

hardware design and generating new results.

The results show that lattice-based cryptosystems can be reduced and optimised

to fit comfortably on a low-end Spartan 6 FPGA. Furthermore, the performance

achieved is practical for low area or high security applications, where tighter

security reductions are desirable.

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion Summary

This thesis presents research that advances the field of practical lattice-based

cryptography, by considering highly secure encryption and signature schemes, and

efficient discrete Gaussian samplers protected against timing analysis with a test

suite for its correctness. Furthermore, the research aims to bring lattice-based

cryptography closer to being deployed in the real-world, creating alternative

hardware designs for discrete Gaussian samplers, an encryption scheme, and a

signature scheme, which at least competes with or in most cases outperforms

previous research. With the additional protection against quantum computers,

the research also provides an interesting alternative to classical cryptography

currently used, such as RSA and ECC.

For all the research in this chapter, the proposed hardware designs are optimised

for FPGAs and improve over previous research in lattice-based cryptography,

elliptic-curve cryptography, and RSA. Moreover, the proposed hardware designs

outperform previous research either in terms of a reduction in the area consumption,

an improvement in throughput (operations per second), a reduction in latency,

or a combination of these. Lattice-based cryptography is indeed practical, which

6.1 Conclusion Summary 165

has been demonstrated in this thesis, and should now be considered as a viable

replacement or alternative to RSA and ECC.

The performance improvements have been achieved by considering alterna-

tives to previous research, such as considering alternative cryptoschemes and

optimisations at an algorithmic, architectural, and device-specific level.

The conclusions from Chapter 3, Chapter 4, and Chapter 5, are now presented

in the following sections, with Section 6.2 detailing several future research avenues

for lattice-based cryptography.

6.1.1 Chapter 3

In this chapter, the first comprehensive evaluation of the discrete Gaussian

sampling component, with respect to hardware, is undertaken. Novel FPGA

hardware designs are proposed for all the major techniques for sampling over

the discrete Gaussian distribution. The proposed samplers are also designed to

operate in independent time, and hence can protect against timing side-channel

analysis. Additionally, the samplers are designed to operate for both encryption

and signature parameters, with results given in which BRAMs are used or not

used. Recommendations are then provided, based on the results of the sampler

designs, for encryption and signature purposes.

In general, the results for Bernoulli sampler [Ducas et al., 2013] hardware

designs are lower in area consumption, achieve a high frequency, and have a higher

throughput rate than previous research. Only Pöppelmann and Güneysu [2014]

achieve lower area for encryption parameters, but the results are hindered by

a 20x larger latency. The hardware designs are also the first to demonstrate a

time-independent Bernoulli sampler.

The results for the Knuth-Yao sampler [Knuth and Yao, 1976] hardware designs

compete with the area consumption of previous research [Roy et al., 2013b, 2014a]

6.1 Conclusion Summary 166

and better them in terms of throughput. The first time-independent hardware

architecture for Knuth-Yao is also proposed, which also betters all previous

research in terms of its performance.

The cumulative distribution table (CDT) [Peikert, 2010] design provides the

best overall performance compared to all the proposed samplers, for both encryp-

tion and signatures, and operates in constant time. The encryption and signature

results significantly better previous research in terms of FPGA area consumption.

For encryption parameters, the frequency is also drastically improved over all

previous research. Du and Bai [2015] have better throughput results in comparison

to the proposed hardware designs, but do not operate in independent-time. For

signature parameters, the area consumption is significantly reduced compared

to previous research whilst being the first to operate in independent-time for

signatures.

6.1.2 Chapter 4

In this chapter, the first hardware evaluation of standard lattices in undertaken.

As described in Section 4.2.2, the standard lattice assumption has better security

assurances compared to the ideal lattice assumption, and was believed to be

infeasible for hardware. However, the research in this chapter shows that standard

lattice-based encryption is feasible for the FPGA platform, and competes well

with the equivalent encryption scheme over ideal lattices. The algorithm of the

encryption scheme is adapted, so that all the operations run generically and

therefore components can be reused. For arithmetic, the hardware design exploits

the DSP on the FPGA, to efficiently compute the 12-bit multiplication. The

results compete with results for ring-LWE encryption (that is, encryption over

ideal lattices) by Göttert et al. [2012]. The results also compete with other

ring-LWE encryption hardware designs by Pöppelmann and Güneysu [2013], in

6.1 Conclusion Summary 167

terms of area consumption, and by Pöppelmann and Güneysu [2014], in terms of

throughput.

The results illustrate that standard lattices could be considered for real-world

implementations. Previously, standard lattices were thought to be too impractical

for the real-world. However, the proposed hardware designs for standard-LWE

encryption compete with ring-LWE encryption, whilst offering more confidence in

security. The results therefore suggest that they could be considered for real-world

applications, especially for high security purposes.

6.1.3 Chapter 5

In this chapter, the first hardware designs of the Ring-TESLA [Akleylek et al.,

2016] lattice-based digital signature scheme are proposed. These are also the

first results which compare to the only other state-of-the-art lattice-based digital

signature scheme in hardware at 128-bit security level [Pöppelmann et al., 2014].

These comparative results by Pöppelmann et al. [2014] are hardware designs of

the BLISS [Ducas et al., 2013] signature scheme. The Ring-TESLA signature

scheme, in comparison to BLISS, is considered more secure since the parameters

for BLISS are not chosen directly from their security reduction, and also offers

worst-case hardness. Post-publication, a security flaw was found in the Ring-

TESLA signature scheme. As already discussed, this does not lead to an actual

attack on the scheme. Improvements to Ring-TESLA are currently in progress.

The main design goal was to provide compact/low-area consumption, thus

alternatives to NTT multiplication were required, as the NTT consumes a large

amount of FPGA area resources whilst also restricting theoretical parameter

selection. Instead, an optimised schoolbook multiplier [Comba, 1990] is employed

which exploits the FPGA DSPs. The overall Sign and Verify hardware architectures

operate generically and can be used for different parameter sets, that do not need

6.2 Topics For Future Research 168

to be NTT-friendly. The area consumption of the proposed Ring-TESLA Sign

and Verify hardware designs is significantly less than previous research [Güneysu

et al., 2012, Pöppelmann et al., 2014] in LBC. The Ring-TESLA results with

the highest throughput also compete with the throughput of GLP [Güneysu

et al., 2012], despite its low area design goal. The results also outperform classical

hardware designs of RSA and ECDSA [Howe et al., 2015].

The results illustrate that alternative lattice-based signature schemes are avail-

able to compete with the state-of-the-art hardware designs of BLISS [Pöppelmann

et al., 2014]. Additionally, the proposed designs could be considered in cases

requiring low-area and/or higher security situations.

6.2 Topics For Future Research

Despite lattice-based cryptography being around for over 20 years, there is still

many areas of future research that need to be investigated. The following sections

discuss possible topics for future research in the area of lattice-based cryptography.

6.2.1 Side-Channel Analysis of Lattice-Based Cryptosys-

tems

As lattice-based DSSs become more practical and publicly available, further attack

vectors like side-channel analysis (SCA) [Kocher et al., 1999] have to be considered.

As described in Section 2.7, attacks such as timing and fault injection attacks,

power, electro-magnetic analysis, and advanced machine learning-based attacks

are serious threats to many real-world implementations. Highly secure algorithms

such as the Advanced Encryption Standard (AES) or ECC are easily breakable

if an attacker has physical access to the security device, unless appropriate

countermeasures are built in.

6.2 Topics For Future Research 169

So far there has been very little research conducted on the vulnerabilities

of lattice-based cryptographic implementations to physical attacks; some have

focused on SCA attack results [Bruinderink et al., 2016, Pessl, 2016] whereas

others have focused on building lattice-based cryptoschemes [Reparaz et al., 2015b,

2016] or its components [Howe et al., 2016a, Khalid et al., 2016] that protect

against SCA attacks.

It is anticipated that there may be a particular vulnerability with respect

to algorithmic parts with variable runtime. In particular, the most important

components within lattice-based cryptography; the NTT multiplier, the discrete

Gaussian sampler, and any rejection sampling used, could be susceptible to

side-channel analysis.

6.2.2 Alternatives in Lattice-Based Cryptography

An interesting route for future research for standard lattice-based encryption, seen

in Chapter 4, would be to exploit more of the FPGA and to increase the throughput

of the encryption scheme. More specifically, parallelising the multiplication

operations and therefore utilising more DSP slices would significantly increase

throughput, roughly n-times using n DSP slices. Additionally, other standard

lattice-based cryptoschemes also exist, such as digital signature schemes, and

it would be interesting to see how these compare against their equivalent ideal

lattice-based cryptoschemes.

One of the most time consuming components for hardware implementations of

lattice-based cryptography is currently polynomial multiplication. Making this

stage efficient has been well studied [Pöppelmann and Güneysu, 2012, Göttert

et al., 2012, Aysu et al., 2013, Roy et al., 2013a, Ducas et al., 2013], with most

instantiations adopting the NTT multiplier. However, alternatives to the NTT are

viable, which would not restrict parameter selection, from specialist techniques by

6.2 Topics For Future Research 170

Karatsuba and Ofman [1963] (O(nlog 3)), Cooley and Tukey [1965] (O(n log n)),

Pollard [1971a] (O(n log n)), and Moenck [1976] (O(n log n)). Optimising such

a stage is arguably the most critical in hardware due to the computationally

intensive operations, as such, this is still an important focus for research for

implementations on larger devices [Pöppelmann and Güneysu, 2012, Pöppelmann

and Güneysu, 2013, Göttert et al., 2012, Aysu et al., 2013, Ducas et al., 2013] and

on lightweight devices [Boorghany and Jalili, 2014a, Pöppelmann and Güneysu,

2014, Oder et al., 2014, Pöppelmann et al., 2015].

Considering the extensions that are required for IoT technologies, lattice-

based cryptography should be considered for a variety of different platforms.

BLISS shows very good performance and is thus a candidate for integration

into other constrained systems and devices like smart cards and microcontrollers

[Boorghany and Jalili, 2014a]. Integrating BLISS, as well as ring-LWE encryption

[Lyubashevsky et al., 2013a], with respect to highly-optimised software is also a

possible area for future work (similar to the research by Güneysu et al. [2013]).

An interesting area of future research would be to evaluate the practical

implications of the compression algorithms and side-channel countermeasures by

Saarinen [2017] or optimisations to BLISS by Ducas [2014b].

Recently, there have been proposals for a discrete Gaussian sampler by Miccian-

cio and Walter [2017] and a digital signature scheme by Ducas et al. [2017], both of

which show promise in software to compete with the current state-of-the-art. An

exciting future research field will be to investigate their performance in hardware,

especially in a combined design.

6.2 Topics For Future Research 171

6.2.3 Theoretical Extensions Within Lattice-Based Cryp-

tography

A module which is one of the more computationally expensive in hardware is the

discrete Gaussian sampling stage. This was extensively researched in Chapter 3.

Due to theoretical restrictions, the discrete Gaussian distribution is essential for

most lattice-based cryptoschemes. However, for the “New Hope” key exchange

protocol [Alkim et al., 2016], a much simpler distribution, the binomial distribution,

is required which would alleviate most of the hardware resources required for

discrete Gaussian samplers.

Further theoretical research is also needed for parameters (and security analy-

ses) of these lattice-based cryptoschemes. Rückert and Schneider [2010] investigate

this but it is still very much an open problem within lattice-based cryptography.

Further investigations into making parameter selection more explicit in lattice-

based cryptography would make implementations easier for practitioners as well

as increasing the security confidence for cryptanalysts.

6.2.4 The Quantum Random Oracle Model

An interesting area of theoretical research looks into the security of DSSs in

the quantum world. Specifically, relating to the DSSs that use random oracle

constructions and whether they are still secure to a quantum adversary. Although

making the DSSs less efficient, schemes by Gentry et al. [2008] and Lyubashevsky

[2012] are respectively shown by Boneh and Zhandry [2013] and Dagdelen et al.

[2013] to be secure to such an adversary, creating the quantum random oracle

model. This could also motivate an important area for future research, such as

proving security for more DSSs to a quantum adversary or possibly creating a

6.2 Topics For Future Research 172

generic technique, that could turn a DSS secure in the random oracle model to

that in the quantum random oracle model.

References

Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assump-
tions for security and forward-security. In EUROCRYPT, pages 418–433, 2002.

Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi.
Tightly-secure signatures from lossy identification schemes. In EUROCRYPT,
pages 572–590, 2012.

RC Agarwal and C Burrus. Fast convolution using fermat number transforms
with applications to digital filtering. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 22(2):87–97, 1974.

Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In STOC, pages 99–108, 1996.

Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the Twenty-ninth Annual
ACM Symposium on Theory of Computing, STOC ’97, pages 284–293, New
York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258604.
URL http://doi.acm.org/10.1145/258533.258604.

Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In STOC, pages 601–610, 2001. ISBN 1-58113-349-9.

Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Gior-
gia Azzurra Marson. An efficient lattice-based signature scheme with provably
secure instantiation. In AFRICACRYPT, pages 44–60, 2016. doi: 10.1007/
978-3-319-31517-1_3. URL http://dx.doi.org/10.1007/978-3-319-31517-1_3.

Martin Albrecht. Discrete Gaussian samplers over lattices. http:
//doc.sagemath.org/html/en/reference/\penalty\z@stats/sage/stats/
distributions/discrete_gaussian_lattice.html, 2014. Accessed: 21.07.2015.

Martin R Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy
of solving LWE by reduction to unique-SVP. In International Conference on
Information Security and Cryptology, pages 293–310. Springer, 2013.

Erdem Alkim, Nina Bindel, Johannes A. Buchmann, and Özgür Dagdelen. TESLA:
tightly-secure efficient signatures from standard lattices. IACR Cryptology ePrint
Archive, 2015:755, 2015. URL http://eprint.iacr.org/2015/755.

http://doi.acm.org/10.1145/258533.258604
http://dx.doi.org/10.1007/978-3-319-31517-1_3
http://doc.sagemath.org/html/en/reference/ \penalty \z@ stats/sage/stats/distributions/discrete_gaussian_lattice.html
http://doc.sagemath.org/html/en/reference/ \penalty \z@ stats/sage/stats/distributions/discrete_gaussian_lattice.html
http://doc.sagemath.org/html/en/reference/ \penalty \z@ stats/sage/stats/distributions/discrete_gaussian_lattice.html
http://eprint.iacr.org/2015/755

References 174

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages
327–343, 2016. URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim.

Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, Edward Eaton,
Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting tesla in the
quantum random oracle model. In International Workshop on Post-Quantum
Cryptography, pages 143–162. Springer, Cham, 2017.

Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory Comput. Syst., 48(3):535–553, 2011.

Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent,
and John Schanck. Estimating the cost of generic quantum pre-image attacks
on SHA-2 and SHA-3. IACR Cryptology ePrint Archive, 2016:992, 2016. URL
http://eprint.iacr.org/2016/992.pdf.

Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei Skorobogatov. Crypto-
graphic processors-a survey. Proceedings of the IEEE, 94(2):357–369, 2006.

Theodore W. Anderson and Donald A. Darling. Asymptotic theory of certain
"goodness of fit" criteria based on stochastic processes. The Annals of Mathe-
matical Statistics, 23(2):193–212, 06 1952.

Theodore W. Anderson and Donald A. Darling. A test of goodness of fit. Journal
of the American Statistical Association, 49(268):765–769, 1954.

Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and area-
efficient fpga implementations of lattice-based cryptography. In HOST, pages
81–86, 2013.

Shi Bai and Steven D. Galbraith. An improved compression technique for signa-
tures based on learning with errors. pages 28–47, 2014a.

Shi Bai and Steven D. Galbraith. An improved compression technique for signa-
tures based on learning with errors. In CT-RSA, pages 28–47, 2014b.

Selçuk Baktir and Berk Sunar. Achieving efficient polynomial multiplication in
fermat fields using the fast fourier transform. In Proceedings of the 44th annual
Southeast regional conference, pages 549–554. ACM, 2006.

Kevin P Balanda and HL MacGillivray. Kurtosis: a critical review. The American
Statistician, 42(2):111–119, 1988.

Rachid El Bansarkhani and Johannes Buchmann. Improvement and efficient imple-
mentation of a lattice-based signature scheme. In Selected Areas in Cryptography,
pages 48–67, 2013.

Rachid El Bansarkhani and Johannes A. Buchmann. High performance lattice-
based cca-secure encryption. IACR Cryptology ePrint Archive, 2015:42, 2015.
URL http://eprint.iacr.org/2015/042.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
http://eprint.iacr.org/2016/992.pdf
http://eprint.iacr.org/2015/042

References 175

Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricardini,
and Gustavo Zanon. Sharper Ring-LWE Signatures. IACR Cryptology ePrint
Archive, 2016:1026, 2016. URL http://eprint.iacr.org/2016/1026.

Paul Barrett. Implementing the Rivest, Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In CRYPTO, pages 311–323,
1986.

Lawrence E. Bassham III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal,
Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel,
David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. SP
800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Technical report, Gaithersburg,
MD, United States, 2010.

Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-
polytope LSH. IACR Cryptology ePrint Archive, 2015:823, 2015. URL http:
//eprint.iacr.org/2015/823.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM CCS, pages 62–73, 1993.

Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how
to sign with rsa and rabin. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 399–416. Springer, 1996.

Anil K. Bera and Carlos M. Jarque. Efficient tests for normality, homoscedasticity
and serial independence of regression residuals: Monte carlo evidence. Economics
Letters, 7(4):313–318, 1981.

Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices, 2014.
http://blog.cr.yp.to/20140213-ideal.html. Feb. 2014. Accessed: 21.10.2015.

Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bul-
garia, April 26-30, 2015, Proceedings, Part I, pages 368–397, 2015. doi: 10.1007/
978-3-662-46800-5_15. URL http://dx.doi.org/10.1007/978-3-662-46800-5_15.

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. Ntru prime. Cryptology ePrint Archive, Report 2016/461,
2016. http://eprint.iacr.org/2016/461.

Richard E. Blahut. Fast Algorithms for Signal Processing. Cambridge University
Press, 2010a. ISBN 9780521190497.

Richard E Blahut. Fast algorithms for signal processing. Cambridge University
Press, 2010b.

Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security
in a quantum computing world. In CRYPTO (2), pages 361–379, 2013.

http://eprint.iacr.org/2016/1026
http://eprint.iacr.org/2015/823
http://eprint.iacr.org/2015/823
http://blog.cr.yp.to/20140213-ideal.html
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://eprint.iacr.org/2016/461

References 176

Ahmad Boorghany and Rasool Jalili. Implementation and comparison of lattice-
based identification protocols on smart cards and microcontrollers. IACR
Cryptology ePrint Archive, 2014:78, 2014a.

Ahmad Boorghany and Rasool Jalili. Implementation and Comparison of Lattice-
based Identification Protocols on Smart Cards and Microcontrollers. IACR
Cryptology ePrint Archive, 2014:514, 2014b.

Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained
implementation of lattice-based cryptographic primitives and schemes on smart
cards. ACM Trans. Embed. Comput. Syst., 14(3):42:1–42:25, April 2015. ISSN
1539-9087. doi: 10.1145/2700078. URL http://doi.acm.org/10.1145/2700078.

Joppe W. Bos, Michael Naehrig, and Joop van de Pol. Sieving for shortest vectors
in ideal lattices: a practical perspective. IACR Cryptology ePrint Archive, 2014:
880, 2014. URL http://eprint.iacr.org/2014/880.

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013. ISBN
978-1-4503-2029-0.

Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
gauss, and reload - A cache attack on the BLISS lattice-based signature scheme.
In CHES, pages 323–345, 2016. doi: 10.1007/978-3-662-53140-2_16. URL
http://dx.doi.org/10.1007/978-3-662-53140-2_16.

Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and
Patrick Weiden. Discrete Ziggurat: A time-memory trade-off for sampling from
a Gaussian distribution over the integers. In SAC, pages 402–417, 2013.

Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical
forward secure signature scheme based on minimal security assumptions. In
Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011,
Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, pages 117–129,
2011.

M Campagna, L Chen, Ö Dagdelen, J Ding, JK Fernick, N Gisin, D Hayford,
T Jennewein, N Lütkenhaus, M Mosca, et al. Quantum safe cryptography and
security. ETSI White Paper, (8), 2015.

Xiaolin Cao, Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, and Neil Hanley.
Optimised Multiplication Architectures for Accelerating Fully Homomorphic
Encryption. IEEE Transactions on Computers, 65(9):2794–2806, 2016.

CESG. Quantum key distribution: A CESG white paper, February 2016. URL
https://www.cesg.gov.uk/white-papers/quantum-key-distribution.

Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness.
In Selected Areas in Cryptography, pages 293–319. Springer-Verlag, 2011.

Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy,
Ray C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. High-speed polyno-
mial multiplication architecture for ring-LWE and SHE cryptosystems. IACR
Cryptology ePrint Archive, 2014:646, 2014.

http://doi.acm.org/10.1145/2700078
http://eprint.iacr.org/2014/880
http://dx.doi.org/10.1007/978-3-662-53140-2_16
https://www.cesg.gov.uk/white-papers/quantum-key-distribution

References 177

Hao Chen, Kristin Lauter, and Katherine E. Stange. Attacks on search RLWE.
Cryptology ePrint Archive, Report 2015/971, 2015.

Yuanmi Chen and Phong Nguyen. BKZ 2.0: Better Lattice Security Estimates.
Advances in Cryptology–ASIACRYPT 2011, pages 1–20, 2011.

Arjun Chopra. Improved Parameters for the Ring-TESLA Digital Signature
Scheme. IACR Cryptology ePrint Archive, 2016:1099, 2016. URL http://eprint.
iacr.org/2016/1099.

Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Efficient software implementation of ring-LWE encryption. IACR Cryptology
ePrint Archive, 2014:725, 2014.

CNSS. Use of public standards for the secure sharing of information among
national security systems. Committee on National Security Systems: CNSS
Advisory Memorandum, Information Assurance 02-15, July 2015.

Paul G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems
Journal, 29(4):526–538, 1990.

James Cooley and John Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, third edition edition, 7 2009. ISBN
9780262033848.

Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. IACR Cryptology ePrint
Archive, 2015:313, 2015. URL http://eprint.iacr.org/2015/313.

Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The Fiat-Shamir
transformation in a quantum world. In ASIACRYPT (2), pages 62–81, 2013.

Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias
Oder, Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-
speed signatures from standard lattices. In LATINCRYPT, pages 84–103,
2014. doi: 10.1007/978-3-319-16295-9_5. URL http://dx.doi.org/10.1007/
978-3-319-16295-9_5.

Ralph B D’Agostino, Albert Belanger, and Ralph B D’Agostino Jr. A suggestion
for using powerful and informative tests of normality. The American Statistician,
44(4):316–321, 1990.

Barb Darrow. Official At Last: Intel Completes $16.7 Billion Buy of Altera.
Fortune, February 2016.

Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In Information Security, pages 171–186. Springer, 2006.

Ruan De Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Efficient software implementation of ring-LWE encryption. In DATE, pages
339–344. EDA Consortium, 2015.

http://eprint.iacr.org/2016/1099
http://eprint.iacr.org/2016/1099
http://eprint.iacr.org/2015/313
http://dx.doi.org/10.1007/978-3-319-16295-9_5
http://dx.doi.org/10.1007/978-3-319-16295-9_5

References 178

Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8(3):209–247, 2014.

Luc Devroye. Sample-based non-uniform random variate generation. In WSC,
pages 260–265. ACM, 1986.

J. F. Dhem. Design of an efficient public-key cryptographic library for RISC-based
smart cards. PhD thesis, 1998. http://users.belgacom.net/dhem/these/these_
public.pdf.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In ACNS, volume 5, pages 164–175. Springer, 2005.

Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating cvp to
within almost-polynomial factors is np-hard. Combinatorica, 23(2):205–243,
April 2003. ISSN 0209-9683.

Benedikt Driessen, Axel Poschmann, and Christof Paar. Comparison of innovative
signature algorithms for WSNs. In WISEC, pages 30–35, 2008.

Chaohui Du and Guoqiang Bai. Towards efficient discrete Gaussian sampling for
lattice-based cryptography. In FPL ’15, pages 1–6. IEEE, 2015.

Chaohui Du and Guoqiang Bai. Towards efficient polynomial multiplication for
lattice-based cryptography. In IEEE International Symposium on Circuits
and Systems, ISCAS 2016, Montréal, QC, Canada, May 22-25, 2016, pages
1178–1181, 2016. doi: 10.1109/ISCAS.2016.7527456. URL http://dx.doi.org/10.
1109/ISCAS.2016.7527456.

Chaohui Du, Guoqiang Bai, and Hongyi Chen. Towards Efficient Implementation
of Lattice-Based Public-Key Encryption on Modern CPUs. In 2015 IEEE
TrustCom/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Volume 1,
pages 1230–1236, 2015. doi: 10.1109/Trustcom.2015.510. URL http://dx.doi.
org/10.1109/Trustcom.2015.510.

Chaohui Du, Guoqiang Bai, and Xingjun Wu. High-Speed Polynomial Multiplier
Architecture for Ring-LWE Based Public Key Cryptosystems. In Proceedings
of the 26th edition on Great Lakes Symposium on VLSI, GLVLSI 2016, Boston,
MA, USA, May 18-20, 2016, pages 9–14, 2016. doi: 10.1145/2902961.2902969.
URL http://doi.acm.org/10.1145/2902961.2902969.

Léo Ducas. Accelerating Bliss: the geometry of ternary polynomials. IACR
Cryptology ePrint Archive, 2014:874, 2014a. URL http://eprint.iacr.org/2014/
874.

Léo Ducas. Accelerating Bliss: the geometry of ternary polynomials. IACR
Cryptology ePrint Archive, 2014:874, 2014b.

Léo Ducas and Phong Q. Nguyen. Faster Gaussian lattice sampling using lazy
floating-point arithmetic. In ASIACRYPT, pages 415–432, 2012a.

http://users.belgacom.net/dhem/these/these_public.pdf
http://users.belgacom.net/dhem/these/these_public.pdf
http://dx.doi.org/10.1109/ISCAS.2016.7527456
http://dx.doi.org/10.1109/ISCAS.2016.7527456
http://dx.doi.org/10.1109/Trustcom.2015.510
http://dx.doi.org/10.1109/Trustcom.2015.510
http://doi.acm.org/10.1145/2902961.2902969
http://eprint.iacr.org/2014/874
http://eprint.iacr.org/2014/874

References 179

Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis
of NTRUSign countermeasures. In ASIACRYPT, pages 433–450, 2012b.

Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In CRYPTO (1), pages 40–56, 2013. Full
version: https://eprint.iacr.org/2013/383.pdf.

Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehle. Crystals–dilithium: Digital signatures from module lattices.
IACR Cryptology ePrint Archive, 2017:633, 2017.

Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete
Gaussians for lattice-based cryptography on a constrained device. Appl. Algebra
Eng. Commun. Comput., pages 159–180, 2014.

Kirsten Eisenträger, Sean Hallgren, and Kristin Lauter. Weak instances of PLWE.
In Selected Areas in Cryptography–SAC 2014, pages 183–194. Springer, 2014.

Yara Elias, KristinE. Lauter, Ekin Ozman, and KatherineE. Stange. Provably
weak instances of ring-LWE. In CRYPTO, volume 9215, pages 63–92. 2015.
ISBN 978-3-662-47988-9. doi: 10.1007/978-3-662-47989-6_4. URL http://dx.
doi.org/10.1007/978-3-662-47989-6_4.

Pavel Emeliyanenko. Efficient multiplication of polynomials on graphics hardware.
In APPT, pages 134–149, 2009.

Niall Emmart and Charles C. Weems. High precision integer multiplication with
a GPU using Strassen’s algorithm with multiple FFT sizes. Parallel Processing
Letters, 21(3):359–375, 2011.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, pages 186–194, 1986.

Andy Field. Discovering statistics using SPSS. Sage publications, 2009.

Ronald Aylmer Fisher and Frank Yates. Statistical tables for biological, agricultural
and medical research. Statistical tables for biological, agricultural and medical
research., pages 25–27, 1948. Third Ed.

Karl Freund. Amazon’s Xilinx FPGA Cloud: Why This May Be A Significant
Milestone. Forbes, December 2016.

Steven D. Galbraith. Mathematics of Public-Key Cryptography. Cambridge:
Cambridge University Press. xiv, 2012.

Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. Cryptology ePrint Archive,
Report 2016/859, 2016. http://eprint.iacr.org/2016/859.

Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature
scheme. In EUROCRYPT, pages 299–320, 2002. ISBN 3-540-43553-0.

Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo. Cryptanalysis
of the NTRU signature scheme (NSS). In ASIACRYPT, pages 1–20, 2001.

https://eprint.iacr.org/2013/383.pdf
http://dx.doi.org/10.1007/978-3-662-47989-6_4
http://dx.doi.org/10.1007/978-3-662-47989-6_4
http://eprint.iacr.org/2016/859

References 180

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, pages 197–206, 2008.

Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D Müller-Glaser, and Jürgen
Becker. Prime field ecdsa signature processing for reconfigurable embedded
systems. International Journal of Reconfigurable Computing, 2011:5, 2011.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems
from lattice reduction problems. Electronic Colloquium on Computational
Complexity (ECCC), 3(56), 1996.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):
281–308, apr 1988. ISSN 0097-5397.

Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin A. Huss. On the design of hardware building blocks for modern lattice-
based encryption schemes. In CHES, pages 512–529, 2012.

Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway — With Me in
It. Wired, July 2015.

Lov K Grover. A fast quantum mechanical algorithm for database search. In
STOC, pages 212–219. ACM, 1996.

Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters, 79(2):325, 1997.

Tim Güneysu. Utilizing hard cores of modern FPGA devices for high-performance
cryptography. J. Cryptographic Engineering, 1(1):37–55, 2011.

Tim Güneysu and Christof Paar. Ultra high performance ECC over NIST primes
on commercial FPGAs. In CHES, pages 62–78, 2008.

Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In CHES,
pages 530–547, 2012.

Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software
speed records for lattice-based signatures. In PQCrypto, pages 67–82, 2013.

Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang
Shantz. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In
CHES, pages 119–132, 2004.

Tamas Györfi, Octavian Cret, and Zalan Borsos. Implementing modular FFTs in
FPGAs - a basic block for lattice-based cryptography. In DSD, pages 305–308,
2013.

Bettina Helfrich. Algorithms to construct minkowski reduced and hermite reduced
lattice bases. Theor. Comput. Sci., 41(2-3):125–139, December 1985. ISSN
0304-3975.

Perry R Hinton. Statistics explained. Routledge, 2014.

References 181

Jeffrey Hoffstein and Joseph Silverman. Optimizations for NTRU. Public-Key
Cryptography and Computational Number Theory, Warsaw, pages 77–88, 2001.

Jeffrey Hoffstein and Joseph H Silverman. Random small hamming weight products
with applications to cryptography. Discrete Applied Mathematics, 130(1):37–49,
2003.

Jeffrey Hoffstein and Joseph H Silverman. Speed enhanced cryptographic method
and apparatus, April 18 2006. US Patent 7,031,468.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In ANTS, pages 267–288, 1998.

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Public key cryptosystem
method and apparatus, June 27 2000. US Patent 6,081,597.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NSS: An NTRU lattice-
based signature scheme. In EUROCRYPT, pages 211–228, 2001a. ISBN
3-540-42070-3.

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ring-based public key
cryptosystem method, October 2 2001b. US Patent 6,298,137.

Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSign: Digital signatures using the NTRU lattice. In
CT-RSA, pages 122–140, 2003. ISBN 3-540-00847-0.

Jeffrey Hoffstein, Nicholas A Howgrave-Graham, Jill C Pipher, Joseph H Silverman,
and William J Whyte. Digital signature and authentication method and
apparatus, December 11 2007. US Patent 7,308,097.

James Howe and Máire O’Neill. GLITCH: A Discrete Gaussian Testing Suite For
Lattice-Based Cryptography. In Proceedings of the 14th International Joint
Conference on e-Business and Telecommunications (ICETE 2017): SECRYPT,
Madrid, Spain, July 24-26, 2017., 2017.

James Howe, Ciara Rafferty, Ayesha Khalid, and Máire O’Neill. Compact and
Provably Secure Lattice-Based Signatures in Hardware. In IEEE International
Symposium on Circuits and Systems, ISCAS 2017, Baltimore, Maryland, USA,
May 28-31, 2017.

James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim
Güneysu. Practical lattice-based digital signature schemes. ACM Transactions
on Embedded Computing Systems, 14(3):24, 2015.

James Howe, Ayesha Khalid, Ciara Rafferty, Francesco Regazzoni, and Máire
O’Neill. On Practical Discrete Gaussian Samplers For Lattice-Based Cryptog-
raphy. IEEE Transactions on Computers, 2016a.

James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu, and
Kevin Beeden. Lattice-based Encryption Over Standard Lattices in Hardware.
In Proceedings of the 53rd Annual Design Automation Conference, DAC 2016,
Austin, TX, USA, June 5-9, 2016, 2016b.

References 182

James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu, and
Kevin Beeden. Lattice-based Encryption Over Standard Lattices in Hardware.
In Proceedings of the 53rd Annual Design Automation Conference, DAC 2016,
Austin, TX, USA, June 5-9, 2016, pages 162:1–162:6. ACM, 2016c.

Intel. The Coming Data Avalanche – And How We’ll Handle It. Forbes Insights,
January 2017.

Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi Takagi.
Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional
ideal lattice. In PKC, pages 411–428, 2014. URL http://dx.doi.org/10.1007/
978-3-642-54631-0_24.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Post-Quantum Cryptography - 4th Inter-
national Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December
2, 2011. Proceedings, pages 19–34, 2011. doi: 10.1007/978-3-642-25405-5_2.
URL http://dx.doi.org/10.1007/978-3-642-25405-5_2.

Carlos M. Jarque and Anil K. Bera. Efficient tests for normality, homoscedasticity
and serial independence of regression residuals. Economics Letters, 6(3):255–259,
1980.

Carlos M. Jarque and Anil K. Bera. A test for normality of observations and
regression residuals. International Statistical Review, pages 163–172, 1987.

D. N. Joanes and C. A. Gill. Comparing measures of sample skewness and kurtosis.
Journal of the Royal Statistical Society: Series D (The Statistician), 47(1), 1998.
ISSN 1467-9884.

Abdel Alim Kamal and Amr M. Youssef. An FPGA implementation of the
NTRUEncrypt cryptosystem. In ICM, pages 209–212, Dec 2009a.

Abdel Alim Kamal and Amr M Youssef. An FPGA implementation of the
NTRUEncrypt cryptosystem. In Microelectronics (ICM), 2009 International
Conference on, pages 209–212. IEEE, 2009b.

Anatoly A. Karatsuba and Yuri Petrovich Ofman. Multiplication of Multidigit
Numbers on Automata. Soviet Physics Doklady, 7:595–596, 1963. ISSN 0038–
5689.

Ayesha Khalid, James Howe, Ciara Rafferty, and Máire O’Neill. Time-independent
discrete gaussian sampling for post-quantum cryptography. In 2016 Interna-
tional Conference on Field-Programmable Technology, FPT 2016, Xi’an, China,
December 7-9, 2016, pages 241–244, 2016. doi: 10.1109/FPT.2016.7929543.
URL https://doi.org/10.1109/FPT.2016.7929543.

Hae-Young Kim. Statistical notes for clinical researchers: assessing normal
distribution (2) using skewness and kurtosis. Restorative dentistry & endodontics,
38(1):52–54, 2013.

Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In Advances in Cryptology—EUROCRYPT’99, pages 206–
222. Springer, 1999.

http://dx.doi.org/10.1007/978-3-642-54631-0_24
http://dx.doi.org/10.1007/978-3-642-54631-0_24
http://dx.doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1109/FPT.2016.7929543

References 183

Donald E Knuth and Andrew C Yao. The complexity of nonuniform random
number generation. Algorithms and complexity: new directions and recent
results, pages 357–428, 1976.

Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 1987.

Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO, pages 104–113. Springer, 1996.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

A. N. Kolmogorov. Foundations of the theory of probability (2nd ed.). 1956.
Chelsea Publishing Co., New York.

Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao.
Post-quantum cryptography on FPGA based on isogenies on elliptic curves.
IEEE Trans. on Circuits and Systems, 64-I(1):86–99, 2017. doi: 10.1109/TCSI.
2016.2611561. URL http://dx.doi.org/10.1109/TCSI.2016.2611561.

Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Designs, Codes and Cryptography, 2014. ISSN 0925-1022.

Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In CT-RSA, pages 319–339, 2011.

Dwayne C. Litzenberger et al. PyCrypto: Cryptographic modules for python,
2013.

Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and
Ingrid Verbauwhede. Efficient Ring-LWE encryption on 8-bit AVR processors.
In CHES, pages 663–682. Springer, 2015.

Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform
for faster ideal lattice-based cryptography. In Cryptology and Network Security
- 15th International Conference, CANS 2016, Milan, Italy, November 14-16,
2016, Proceedings, pages 124–139, 2016. doi: 10.1007/978-3-319-48965-0_8.
URL http://dx.doi.org/10.1007/978-3-319-48965-0_8.

Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009.

Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
pages 738–755, 2012.

Vadim Lyubashevsky. Digital signatures based on the hardness of ideal lattice
problems in all rings. In Advances in Cryptology–ASIACRYPT 2016: 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
II 22, pages 196–214. Springer, 2016.

Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding,
unique shortest vectors, and the minimum distance problem. In CRYPTO,
pages 577–594, 2009. ISBN 978-3-642-03355-1.

http://dx.doi.org/10.1109/TCSI.2016.2611561
http://dx.doi.org/10.1007/978-3-319-48965-0_8

References 184

Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A modest proposal for FFT hashing. In FSE, pages 54–72, 2008.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT, pages 1–23, 2010.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43, 2013a.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE
cryptography. In EUROCRYPT, pages 35–54, 2013b.

George Marsaglia. A current view of random number generators. In Computer
Science and Statistics, Sixteenth Symposium on the Interface. Elsevier Science
Publishers, North-Holland, Amsterdam, pages 3–10, 1985.

George Marsaglia. A current view of random numbers. In L. Billard, editor,
Computer Science and Statistics: Proceedings of the 16th Symposium on the
Interface, volume 36, pages 105–110. Elsevier Science Publishers B. V., 7 1993.

George Marsaglia. DIEHARD: A battery of tests of randomness. http://www.
stat.fsu.edu/pub/diehard/, 1996.

George Marsaglia, Wai Wan Tsang, et al. The Ziggurat method for generating
random variables. Journal of statistical software, 5(8):1–7, 2000.

Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In EUROCRYPT, pages
419–453. Springer, 1988.

James H. McClellan. Hardware realization of a fermat number transform. IEEE
Transactions on Acoustics, Speech and Signal Processing, 24(3):216–225, Jun
1976. ISSN 0096-3518.

Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN progress report, 42(44):114–116, 1978.

Ralph C Merkle. A certified digital signature. In CRYPTO, pages 218–238.
Springer, 1990.

Cade Metz. Microsoft Bets Its Future on a Reprogrammable Computer Chip.
Wired, December 2016.

Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Comput. Complex., 16(4):365–411, December 2007. ISSN
1016-3328.

Daniele Micciancio. Efficient reductions among lattice problems. In SODA, pages
84–93, 2008.

Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample
complexity of LWE search-to-decision reductions. In CRYPTO, pages 465–484,
2011.

http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/

References 185

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718, 2012.

Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small
parameters. In CRYPTO (1), pages 21–39, 2013.

Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms
for the shortest vector problem. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 1468–1480. SIAM, 2010.

Daniele Micciancio and Michael Walter. Gaussian sampling over the integers:
Efficient, generic, constant-time. IACR Cryptology ePrint Archive, 2017:259,
2017.

Victor S Miller. Use of elliptic curves in cryptography. In CRYPTO, pages 417–426,
1986. ISBN 0-387-16463-4.

Robert T. Moenck. Practical fast polynomial multiplication. In SYMSACC, pages
136–148, 1976.

Dustin Moody. Post-quantum cryptography: NIST’s plan for the future. Talk given
at PQCrypto ’16 Conference, 23-26 February 2016, Fukuoka, Japan, February
2016. URL https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf.

Steven J Murdoch, Saar Drimer, Ross Anderson, and Mike Bond. Chip and pin
is broken. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
433–446. IEEE, 2010.

Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures. J. Cryptology, 22(2):139–160, 2009.

NIST. Post-quantum crypto project. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/, 2016. Accessed: 27.07.2017.

Henri Nussbaumer. Fast Fourier transform and convolution algorithms. Springer-
Verlag, 1980. ISBN 978-3540118251.

Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and
RSA: lattice-based digital signatures on constrained devices. In DAC, pages
1–6, 2014.

Tobias Oder, Tim Güneysu, Felipe Valencia, Ayesha Khalid, Maire O’Neill, and
Francesco Regazzoni. Lattice-based cryptography: From reconfigurable hard-
ware to ASIC. In Integrated Circuits (ISIC), 2016 International Symposium on,
pages 1–4. IEEE, 2016.

Máire O’Neill, Elizabeth O’Sullivan, Gavin McWilliams, Markku-Juhani Saarinen,
Ciara Moore, Ayesha Khalid, James Howe, Rafaël Del Pino, Michel Abdalla,
Francesco Regazzoni, Felipe Valencia, Tim Güneysu, Tobias Oder, Adrian Waller,
Glyn Jones, Anthony Barnett, Robert Griffin, Andrew Byrne, Bassem Ammar,
and David Lund. Secure Architectures of Future Emerging Cryptography
SAFEcrypto. In Proceedings of the ACM International Conference on Computing
Frontiers, CF’16, Como, Italy, May 16-19, 2016, pages 315–322, 2016.

https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

References 186

Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Post-
Quantum Cryptography, pages 95–145. 2009. ISBN 978-3-540-88701-0.

Marshall C. Pease. An adaptation of the fast Fourier transform for parallel
processing. J. ACM, 15(2):252–264, April 1968. ISSN 0004-5411.

Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem. Electronic Colloquium on Computational Complexity (ECCC), 15
(100), 2008.

Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO,
pages 80–97, 2010.

Chris Peikert. Lattice cryptography for the internet. In Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON,
Canada, October 1-3, 2014. Proceedings, pages 197–219, 2014. doi: 10.1007/
978-3-319-11659-4_12. URL http://dx.doi.org/10.1007/978-3-319-11659-4_12.

Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 187–196. ACM, 2008.

Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In Progress in Cryptology - INDOCRYPT 2016 - 17th International
Conference on Cryptology in India, Kolkata, India, December 11-14, 2016,
Proceedings, pages 153–170, 2016. doi: 10.1007/978-3-319-49890-4_9. URL
http://dx.doi.org/10.1007/978-3-319-49890-4_9.

John M Pollard. The fast fourier transform in a finite field. Mathematics of
Computation, 25(114):365–374, 1971a.

John M Pollard. The fast Fourier transform in a finite field. Mathematics of
computation, 25(114):365–374, 1971b.

Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In LATINCRYPT, pages
139–158, 2012.

Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In SAC, pages 68–85, 2013.

Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. In ISCAS, pages 2796–2799,
2014.

Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based
signatures on reconfigurable hardware. In CHES, pages 353–370, 2014. Full
version: https://eprint.iacr.org/2014/254.pdf.

Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-Performance Ideal
Lattice-Based Cryptography on 8-bit ATxmega Microcontrollers. In Interna-
tional Conference on Cryptology and Information Security in Latin America,
pages 346–365. Springer, 2015.

http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-49890-4_9
https://eprint.iacr.org/2014/254.pdf

References 187

Charles M Rader. Discrete Convolutions via Mersenne Transforms. IEEE Trans-
actions on Computers, 100(12):1269–1273, 1972.

Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. John Wiley & Sons,
fourth edition edition, 2010. ISBN 978-0-470-74367-6. http://pdf.th7.cn/down/
files/1312/Smart%20Card%20Handbook,%204th%20Edition.pdf.

Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of Shapiro-
Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of
statistical modeling and analytics, 2(1):21–33, 2011.

Chester Rebeiro, Sujoy Sinha Roy, and Debdeep Mukhopadhyay. Pushing the
limits of high-speed GF(2m) elliptic curve scalar multiplication on FPGAs. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 494–511. Springer, 2012.

Oded Regev. New lattice-based cryptographic constructions. Journal of the ACM
(JACM), 51(6):899–942, 2004.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC, pages 84–93, 2005. ISBN 1-58113-960-8.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM, 56(6), 2009.

Oded Regev. The learning with errors problem. Invited survey in CCC, 2010.

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation. In CHES, pages 683–702, 2015a.

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. A
Masked Ring-LWE Implementation. In Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, pages 683–702, 2015b. doi: 10.1007/
978-3-662-48324-4_34. URL http://dx.doi.org/10.1007/978-3-662-48324-4_34.

Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and
Ingrid Verbauwhede. Masking ring-lwe. J. Cryptographic Engineering, 6(2):
139–153, 2016. doi: 10.1007/s13389-016-0126-5. URL http://dx.doi.org/10.
1007/s13389-016-0126-5.

Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact Hardware Implementation of Ring-LWE
Cryptosystems. IACR Cryptology ePrint Archive, 2013:866, 2013a. URL
http://eprint.iacr.org/2013/866.

Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High Precision
Discrete Gaussian Sampling on FPGAs. In SAC, pages 1–39, 2013b.

http://pdf.th7.cn/down/files/1312/Smart%20Card%20Handbook,%204th%20Edition.pdf
http://pdf.th7.cn/down/files/1312/Smart%20Card%20Handbook,%204th%20Edition.pdf
http://dx.doi.org/10.1007/978-3-662-48324-4_34
http://dx.doi.org/10.1007/s13389-016-0126-5
http://dx.doi.org/10.1007/s13389-016-0126-5
http://eprint.iacr.org/2013/866

References 188

Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede.
Compact and side channel secure discrete Gaussian sampling. IACR Cryptology
ePrint Archive, 2014:591, 2014a.

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact Ring-LWE Cryptoprocessor. In CHES,
pages 371–391. Springer, 2014b.

J. P. Royston. An extension of Shapiro and Wilk’s W test for normality to large
samples. Applied Statistics, pages 115–124, 1982.

Markus Rückert and Michael Schneider. Estimating the security of lattice-based
cryptosystems. IACR Cryptology ePrint Archive, 2010:137, 2010.

Ajay Rupani, Dikshant Pandey, and Gajendra Sujediya. Review and study of
fpga implementation of internet of things. IJSTE - International Journal of
Science Technology & Engineering, 3(2), 2016.

Markku-Juhani O. Saarinen. Gaussian sampling precision and information leakage
in lattice cryptography. Cryptology ePrint Archive, Report 2015/953, 2015.
Full version: https://link.springer.com/article/10.1007/s13389-017-0149-6.

Markku-Juhani O Saarinen. Arithmetic Coding And Blinding Countermeasures
For Lattice Signatures. Journal of Cryptographic Engineering, pages 1–14, 2017.

Michael Schneider. Sieving for shortest vectors in ideal lattices. In AFRICACRYPT,
pages 375–391, 2013. doi: 10.1007/978-3-642-38553-7_22. URL http://dx.doi.
org/10.1007/978-3-642-38553-7_22.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO, pages 239–252, 1989.

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, pages 591–611, 1965.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509,
October 1997. ISSN 0097-5397.

Joseph H Silverman and William Whyte. Timing attacks on NTRUEncrypt via
variation in the number of hash calls. In CT-RSA, pages 208–224. Springer,
2007.

Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 2–12. Springer, 2002.

Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 27–47. Springer, 2011.

Daisuke Suzuki and Tsutomu Matsumoto. How to maximize the potential of FPGA-
based DSPs for modular exponentiation. IEICE transactions on fundamentals
of electronics, communications and computer sciences, 94(1):211–222, 2011.

https://link.springer.com/article/10.1007/s13389-017-0149-6
http://dx.doi.org/10.1007/978-3-642-38553-7_22
http://dx.doi.org/10.1007/978-3-642-38553-7_22

References 189

John Von Neumann. Various techniques used in connection with random digits.
Applied Math Series, 12(36-38):1, 1951.

Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buchmann.
Instantiating treeless signature schemes. IACR Cryptology ePrint Archive, 2013:
65, 2013.

Franz Winkler. Polynomial Algorithms in Computer Algebra (Texts and Mono-
graphs in Symbolic Computation). Springer, 1 edition, 8 1996. ISBN
9783211827598.

Nicky Woolf. DDoS attack that disrupted internet was largest of its kind in
history, experts say. The Guardian, October 2016.

Xilinx. Spartan-6 family overview. Xilinx Product Specification, DS160 (v2. 0),
2011.

Xilinx. Virtex-5qv fpga electrical characteristics. Xilinx Product Specification,
DS692 (v1.3.1), 2015.

APPENDIX A

Example Results from the Discrete Gaussian

Test Suite

Tables A.1 and A.2 show the performance of an operational discrete Gaussian

sampler, a Bernoulli sampler, with 236 samples. Table A.1 shows results for a

sampler providing outputs as expected and which passes all proposed tests. Table

A.2 shows results for a sampler with all correct values except for the standard

deviation, which is in this case set to σ = 210. The results expectedly pass for

most of the tests, but from Test 2 in Table A.2 in can be seen that the calculated

σ is lower than required.

191

Table A.1 Discrete Gaussian sampling test results with target standard deviation
σ = 215.727 . . . using the Bernoulli sampling with sample size 236.

Test Description Test Output
(1) Sample Mean: 0.001371196849504485726356506348

Standard Error Of The Mean: 0.0008229334036229891103988139999
C.I. Of The Sample Mean = 0.001371196849504485726356506348

+/- 0.002707450897919634202448565658
with 99.9% confidence

(2) Sample Standard Deviation: 215.7270541593448573563866972
Standard Error Of The Standard Deviation: 0.0005819017901709756494057053363
C.I. Of The Sample Standard Deviation = 215.7270541593448573563866972

+/- 0.001914456889662509907218075053
with 99.9% confidence

(3) Sample Tail-Cut Parameter (τ): 13.00250044549569511934255936
Distance From Target Tail-Cut: 0.3183733330274678919577527041

(4) Sample Skewness: -0.00001763835979933123583199835026
Standard Error Of The Sample Skewness: 0.000009344061823767513075122646283

(5) Sample Excess Kurtosis: -0.000024501635887997449631126
Standard Error Of The Sample Kurtosis: 0.00001868812364726307815918276254

(6) Sample Hyperskewness: -0.00009572213233407114802715387328
(7) Sample Excess Hyperkurtosis: -0.00025338061051584529784336
(8) Jarque-Bera Test For Normality: 4.312166487216671274936539166E-7

(test statistic, p-value) 0.999999784392
(9) D’Agostino-Pearson K2 Omnibus Test: 0.002934034729343886905514431457

(test statistic, p-value) 0.998534058179
(10)-(11) Histogram and Quantile-Quantile (QQ) plots:

192

Table A.2 Discrete Gaussian sampling test results with target standard deviation
σ = 215.727 . . ., but generated with standard deviation σ = 210, using the
Bernoulli sampling with sample size 236.

Test Description Test Output
(1) Sample Mean: 0.0004157805087743327021598815918

Standard Error Of The Mean: 0.0008010847977938296437426335266
C.I. Of The Sample Mean = 0.0004157805087743327021598815918

+/- 0.002635568984741699556373513493
with 99.9% confidence

(2) Sample Standard Deviation: 209.9995732328656781292689232
Standard Error Of The Standard Deviation: 0.0005664524928295926512411119437
C.I. Of The Sample Standard Deviation = 209.9995732328656781292689232

+/- 0.001863628701409359842707693491
with 99.9% confidence

(3) Sample Tail-Cut Parameter (τ): 12.65484000577655888620505777
Distance From Target Tail-Cut: 0.6660337727466041250952542941

(4) Sample Skewness: -0.000008109373516717886834916069369
Standard Error Of The Sample Skewness: 0.000009344061823767513075122646283

(5) Sample Excess Kurtosis: -0.000028095808185055005256698
Standard Error Of The Sample Kurtosis: 0.00001868812364726307815918276254

(6) Sample Hyperskewness: -0.0001036514680471919992233509974
(7) Sample Excess Hyperkurtosis: -0.00051909982946815267581923
(8) Jarque-Bera Test For Normality: 2.394260488861117097644603536E-7

(test statistic, p-value) 0.999999880287
(9) D’Agostino-Pearson K2 Omnibus Test: 0.003004329115990208729071137285

(test statistic, p-value) 0.998498963126
(10)-(11) Histogram and Quantile-Quantile (QQ) plots:

APPENDIX B

Author’s Publications

1. James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan,

and Tim Güneysu. Practical lattice-based digital signature schemes. ACM

Transactions on Embedded Computing Systems, 14(3):24, 2015.

2. James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu,

and Kevin Beeden. Lattice-based Encryption Over Standard Lattices in

Hardware. In Proceedings of the 53rd Annual Design Automation Conference,

DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 162:1–162:6. ACM,

2016c.

3. Máire O’Neill, Elizabeth O’Sullivan, Gavin McWilliams, Markku-Juhani

Saarinen, Ciara Moore, Ayesha Khalid, James Howe, Rafaël Del Pino, Michel

Abdalla, Francesco Regazzoni, Felipe Valencia, Tim Güneysu, Tobias Oder,

Adrian Waller, Glyn Jones, Anthony Barnett, Robert Griffin, Andrew Byrne,

Bassem Ammar, and David Lund. Secure Architectures of Future Emerg-

ing Cryptography SAFEcrypto. In Proceedings of the ACM International

Conference on Computing Frontiers, CF’16, Como, Italy, May 16-19, 2016,

pages 315–322, 2016.

194

4. Ayesha Khalid, James Howe, Ciara Rafferty, and Máire O’Neill. Time-

independent discrete gaussian sampling for post-quantum cryptography. In

2016 International Conference on Field-Programmable Technology, FPT

2016, Xi’an, China, December 7-9, 2016, pages 241–244, 2016. doi: 10.1109/

FPT.2016.7929543. URL https://doi.org/10.1109/FPT.2016.7929543.

5. James Howe, Ayesha Khalid, Ciara Rafferty, Francesco Regazzoni, and

Máire O’Neill. On Practical Discrete Gaussian Samplers For Lattice-Based

Cryptography. IEEE Transactions on Computers, 2016a.

6. James Howe, Ciara Rafferty, Ayesha Khalid, and Máire O’Neill. Compact

and Provably Secure Lattice-Based Signatures in Hardware. In IEEE In-

ternational Symposium on Circuits and Systems, ISCAS 2017, Baltimore,

Maryland, USA, May 28-31, 2017 .

https://doi.org/10.1109/FPT.2016.7929543

195

	Nomenclature
	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Background and Theory
	3 Practical Discrete Gaussian Samplers For Lattice-Based Cryptography
	4 Lattice-Based Encryption Over Standard Lattices in Hardware
	5 Ideal Lattice-Based Digital Signatures in Hardware
	6 Conclusion and Future Work
	References
	Appendix A Example Results from the Discrete Gaussian Test Suite
	Appendix B Author's Publications

