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• Why is lattice-based cryptography hard?

• Operations / components / sizes required.

• What’s changed within candidates?

• M-LWE and LWR.

• Designs pre-/post-standardisation announcement.

• Specifically, some lattice-based signature and KEM hardware designs.

• Other / miscellaneous.

Please interrupt me with questions, comments, or (more likely) errors.



Why Lattices?
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• Mathematics easier to understand (vs e.g. ECC).
• Operations require simple multiplication, addition, modular reduction.
• Simple parameter selection / scalable to fit security needs.
• Average-case to worst-case hardness.
• Offers KEM, signatures, FHE, IBE, etc.
• Highest candidate numbers submitted to NIST.
• No major security issues in 30+ years.
• Already used by Google, strongSwan VPN, etc.
• Efficient KeyGen, Encrypt/Sign, Decrypt/Verify.
• Relatively small keys, ciphertexts, and signatures.



Learning With Errors
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• There is a secret vector 𝒔 ← ℤ$%.

• An oracle (who knows 𝒔) generates a uniform matrix 𝑨 and noise vector e distributed normally with 

standard deviation αq.

• The oracle outputs: 𝑨 and 𝒃 = 𝑨×𝒔 + 𝒆 mod 𝑞.

• The distribution of 𝑨 is uniformly random, 𝒃 is pseudo-random.

• Can you find 𝒔, given access to (𝑨, 𝒃)?

• Can you distinguish (𝑨, 𝒃) from a uniformly random (𝑨, 𝒃’)?



Ideal and Module Lattices
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• Standard lattices deal with matrices / vectors.

• Adding additional structure, one can deal with ideal or module lattices.

• Thus, (cyclic) matrices can be replaced with polynomials. 

• Efficiencies are then gained using polynomial multiplication (e.g. NTT) over the ring                  

𝑅$ = ℤ$ 𝑥 /(𝑥% + 1) for 𝑞 = 1 mod 2𝑛.

• Multiplication complexity reduces from O(𝑛:) to O(𝑛 log(𝑛)).



Classification of Lattices (Simplified)
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• Lattice-based cryptographic schemes generally fall under three classes:

LWE ←→ Module-LWE ←→ Ring-LWE 

• Added structures hinder security:

LWE ≥sec. Module-LWE ≥sec. Ring-LWE 

• However, it can also enhance performance:

LWE ≤per. Module-LWE ≤per. Ring-LWE



Modules: Multiplication
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• NTTs typically aren’t generic; require ad-hoc designs.

• Research done investigating high-performance vs. low-cost designs.

• Some candidates specify NTTs explicitly, i.e. NewHope.

• NTTs get modular reduction for free, but restrict parameters (e.g. requiring a prime modulus).

• Matrix / schoolbook / Karatsuba multiplication more generic.

• General multiplication has more liberal parameter selection, but requires modular reduction.

• Sparse multiplication is used often in signature schemes and LWR,  using binary or ternary values, which can 

simply use shift-and-adds.



Modules: Multiplication
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• Typically require <<32-bit integer multiplication (no floating points) most actually <16 bits.

• Thus, DSPs are ideal for MAC (or just multiply) operations.

• BRAMs typically used for key / input / output storage.

• Inputs drawn from memory, PRNG, and/or error sampler.

• Most candidates provide constant-time multiplication.



Modules: Error Samplers
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• Error adds noise to computations on secret data; computationally hard.

For 𝑩 = 𝑨 ∗ 𝑺 + 𝑬
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Modules: Error Samplers
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Modules: Error Samplers
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• Error adds noise to computations on secret data; computationally hard.

• Error sampled from Gaussian-like or Binomial distribution.

• Look-up table methods: CDT sampler.

• Arithmetic-based methods: discrete Ziggurat sampler.

• Hybrid table / arithmetic methods: Bernoulli and Knuth-Yao samplers.

• Standard deviations depend on cryptographic schemes and parameters:



Modules: Error Samplers
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• Error samplers linked to computational hardness, thus a side-channel target.

• Important to ensure independent-time design (e.g. constant time).

• Some recent research considers masked and fault attack protection for these modules.

• One can use Gaussian convolutions to make larger parameters efficient, e.g. for signature schemes.



Modules: Error Sampling
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• Alternatively, some schemes (NewHope, Kyber) use Binomial sampling.

• One simply subtracts the Hamming weight of two uniform bit vectors.

• LWR schemes instead use ‘rounding’ instead of error addition.

• Dilithium (and maybe others?) uses uniform random noise.



Module Lattices
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• (Ring-)LWE deals with vectors/polynomials in 𝑅$A , for example 𝑨 ∗ 𝑺 + 𝑬.

• Module-LWE deals with polynomials in 𝑅$C , for example 𝑘 = 3 in Kyber. 

• Higher security parameters increase 𝑘, instead of 𝑛.

• Thus, virtually no re-implementation for changing security levels.

• “One way to informally view the MLWE problem is to take the RLWE problem and replace the single ring elements 
(𝑨 and 𝒔) with module elements over the same ring. Using this intuition, RLWE can be seen as MLWE with module 
rank 𝑘 = 1.”

𝐴A(𝑥) ∈ 𝑅$ 𝐴:(𝑥) ∈ 𝑅$

𝐴H(𝑥) ∈ 𝑅$ 𝐴I(𝑥) ∈ 𝑅$

𝑆A 𝑥 ∈ 𝑅$

𝑆: 𝑥 ∈ 𝑅$

× +
EA 𝑥 ∈ 𝑅$

E: 𝑥 ∈ 𝑅$



Learning With Rounding
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• SABER uses module-LWR problem.

• Polynomials are always of 𝑛 = 256 coefficients.

• Flexibility: matrix dimensions (𝑘) is parameterizable.

• 2-by-2 for 115-bit  post-quantum security

• 3-by-3 for 180-bit  post-quantum security 

• 4-by-4 for 245-bit  post-quantum security

Light SABER

SABER

Fire SABER



Differences in LWE and LWR
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• SABER uses module-LWR problem.

where p < q

Prime q introduces rounding bias

Uniform in [0, q-1]

- Cannot use prime q             L
- Hence, no NTT-based fast polynomial multiplication

à Thus, one needs to use generic polynomial multiplication algorithm. 

• Rounds a product 𝒑 = 𝒂 ∗ 𝒔 to the nearest integer.



Generic Polynomial Multiplication
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• SABER uses hybrid of Toom-Cook, Karatsuba, and schoolbook multiplication.

• Generic techniques (Toom-3, Toom-4, Karatsuba) can be applied to SABER, NTRU-HRSS, and NTRUEncrypt.

• NTRU Prime also uses non-NTT multiplication.

• Round5 only requires LHW shift-and-add multiplication.

• Generic hardware techniques have been researched for Ring-TESLA.



Lattice-based Signatures in Hardware
A hardware design of Ring-TESLA

20



Generic Polynomial Multiplication
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• qTESLA is (somewhat) based upon the signature scheme; Ring-TESLA.

Verify(𝝁; 𝒛, 𝒄; 𝒂A, 𝒂:, 𝒕A, 𝒕:):
Compute hash inputs:
§ 𝒘A

V ≡ 𝒂A𝒛 + 𝒕A𝒄 mod 𝑞
§ 𝒘:

V ≡ 𝒂:𝒛 + 𝒕:𝒄 mod 𝑞
Compute the hash function:
§ 𝒄VV = 𝐻(𝒘A

V ||𝒘:
V , 𝜇)

Accept/reject signature:
§ If 𝒄V = 𝒄VV

Sign(𝝁; 𝒂A, 𝒂:, 𝒔, 𝒆A, 𝒆:):
Uniform polynomial: 𝒚 ← ℤ$ 𝒙 /(𝒙% + 1)
§ 𝒗A ≡ 𝒂A𝒚 mod 𝑞, 𝒗: ≡ 𝒂:𝒚 mod 𝑞
Compute the hash function:
§ 𝒄 = 𝐻(𝒗A||𝒗:, 𝜇)
Compute signature/rejections:
§ 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
§ 𝒘A ≡ 𝒗A + 𝒆A𝒄 mod 𝑞
§ 𝒘: ≡ 𝒗𝟐 + 𝒆:𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):
Discrete Gaussian polynomials: 𝐬, 𝒆A, 𝒆: ← 𝐷b%, 𝐭A ≡ 𝒂A𝒔 + 𝒆A mod 𝑞, 𝐭: ≡ 𝒂: + 𝒆: mod 𝑞
Secret-Key: (𝒔, 𝒆A, 𝒆:) // Public-Key: (𝒕A, 𝒕:).

128-bit security 
parameters:

𝑛 = 512,
𝑞 = 51750913,

𝜎 = 52.

Signature is 11.9 kb,
public-key is 26 kb,  

and secret-key is 13.7 kb.
1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.
2) Howe, J., Rafferty, C., Khalid, A. and O'Neill, M., 2017. Compact and provably secure lattice-based signatures in hardware. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE.
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Ring-TESLA in Hardware
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Pre-Hash

Hash

Post-Hash

Finite-State Machine of Ring-TESLA
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Finite-State Machine of Ring-TESLA
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• Pipeline created for pre-hash computations.

• After pre-hash polynomial multiplication; 

• 𝒚 is copied to another register for 𝒛.

• 𝒚 is generated for next signature in parallel.

• Hash, LHW calculations of 𝒛, 𝒘𝟏, and 𝒘𝟐, and 
rejections then outside the critical path.

• Sign/Verify critical path thus pre-hash phase.



Ring-TESLA Hardware Results

25

• Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25.

• Smaller than other lattice-based signature designs, suffers in throughput.

• Significantly smaller and faster in comparison to RSA and ECDSA. 

• Further work generated hardware friendly parameters.

1
2
4
8

1
2
4
8



Frodo: Take off the Ring!
Practical post-quantum key exchange and key encapsulation from LWE.
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Frodo: Why Should We Take off the Ring?
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The design philosophy of FrodoKEM combines: 

• Conservative yet practical post-quantum constructions.

• Security derived from cautious parameterizations of the well-studied learning with errors problem.

• Thus, close connections to conjectured-hard problems on generic, “algebraically unstructured” lattices.

• Parameter selection is far less constrained than vs ideal lattice schemes.

• FrodoKEM multiplication can also be generic.



Frodo: Why Should We Take off the Ring?
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These qualities are appealing for practitioners;

• Probably the most secure lattice-based candidate.

• Many IoT use cases require long-term, efficient cryptography.

• Frodo is ideal for long-term security and constrained platforms. 

• Suitable for use cases such as satellite communications and V2X.

• Frodo is extremely versatile and theoretically sound.

• However, it has less implementations than ideal lattice schemes.

• And how do we manage the larger keys and no NTT...



Frodo: Why Should We Take off the Ring?
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• Simple design:

• Free modular arithmetic (𝑞 = 2Ah).

• Simple Gaussian sampling.

• Parallelisable matrix-vector operations.

• Key encapsulation without reconciliation.

• Simple code, no complex use of NTT.

• CCA-secure with negligible error rate. 

• Flexible, fine-grained choice of parameters.

• Dynamically generated 𝑨 to defend against all-for-the-price-of-one attacks (AES and cSHAKE variants).



Frodo: Why Should We Take off the Ring?
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• Round 2 changes add high-security parameters and use of SHAKE.

• Main operations are of the form from before:

𝑩 = 𝑺V ∗ 𝑨 + 𝑬mod 𝑞

• 𝑺ʹ is a matrix with dimensions 8-by-640 (or 8-by-976).

• 𝑨 is a matrix with dimensions 640-by-640 (or 976-by-976).

• Thus, we design a LWE vector-matrix multiplication core, and repeat.

• DSPs are ideal; Artix-7 FPGAs have 48-bit MAC operations.

• 𝑞 is always a power-of-two, thus modular reduction is free!

• Uniform and “Gaussian” error generation. 

• Random oracles via cSHAKE for CCA security. 



FrodoKEM in Hardware
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“A massive design challenge was to balance memory utilisation, whilst not deteriorating the performance too much 
to not overexert the limited computing capabilities of the embedded devices.”



FrodoKEM in Hardware
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• Proposes a generic LWE multiplication core which computes vector-matrix multiplication and error addition.

• Generates future random values in parallel, minimising delays between vector-matrix multiplications.

• Hybrid pre-calculated / on-the-fly memory management is used, which continuously updates previous values.

• Ensures constant runtime by parallelising other modules with multiplication. 

• FrodoKEM-640 has a total execution time of 60 ms, running at 167MHz.



FrodoKEM in Hardware
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• Similarities in KeyGen, Encaps, and Decaps mean much of this is reused.

• Most of the generation of 𝑨 is done on-the-fly to save BRAM.

• LWE multiplier is reused in all modules and all LWE calculations.



FrodoKEM in Hardware
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• For 𝑺’∗𝑨 we generate the first row of S’ and enough randomness in 𝑨.

• Whilst they multiply, we use ping-pong buffering to generate future values.

• This removes latency and ensures a practical constant-time design.



FrodoKEM in Hardware
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• Competes with NewHope area consumption, but much slower performance. 

• Due to memory optimisations, we have huge savings in BRAM compared to LWE Encryption [HMO+16].

• Results also provided for FrodoKEM’s modules; that is cSHAKE and Error sampling.



Other / Miscellaneous
(Don’t worry, its nearly over!)
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Other: Gaussian Sampling Designs
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• In a comprehensive study we found CDT sampling the most efficient in hardware, running in constant-time is key 
for these modules.

• Survey available on error samplers for Round 1 candidates.

• Gaussian convolution tricks can be used to make these efficient for large parameters, which provide some 
‘masking’ for free.

• Simple tricks can make these modules protected against fault attacks.



Other: PQCzoo.com
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• PQCzoo.com is a website collecting results for optimised software and hardware designs as well as side-channel 
analysis papers.

• One can add their own results with a simple GitHub commit.

• Please add your own results!



Conclusion
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• Most Round 2 schemes have yet to be implemented in hardware.

• But, many require aspects that have already been researched.

• I’ve put together a list of references which should be helpful.

• Important that future designs specify design philosophy.

• e.g. high throughput or low area.

• Also, these designs should be evaluated on the same FPGA.

• e.g. the Xilinx Artix-7 FPGA.

• This ensures comparisons between hardware designs are fair and straightforward.

PQShield is hiring software/hardware post-quantum specialists.



Useful References: PhD Theses
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• Howe, J., 2017. Practical Lattice-Based Cryptography in Hardware. https://jameshowe.eu/files/thesis.pdf

• Pöppelmann, T., 2017. Efficient implementation of ideal lattice-based cryptography. it-Information Technology, 
59(6), pp.305-309. https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/4917

• Roy, S. S., 2017.  Public Key Cryptography on Hardware Platforms: Design and Analysis of Elliptic Curve and Lattice-
based Cryptoprocessors. https://www.esat.kuleuven.be/cosic/publications/thesis-288.pdf

https://jameshowe.eu/files/thesis.pdf
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/4917
https://www.esat.kuleuven.be/cosic/publications/thesis-288.pdf


Useful References: Multiplication
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• Pöppelmann, T. and Güneysu, T., 2012, October. Towards efficient arithmetic for lattice-based cryptography on 
reconfigurable hardware. In International Conference on Cryptology and Information Security in Latin America (pp. 
139-158). Springer, Berlin, Heidelberg.

• Aysu, A., Patterson, C. and Schaumont, P., 2013, June. Low-cost and area-efficient FPGA implementations of lattice-
based cryptography. In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 
81-86). IEEE.

• Kannwischer, M.J., Rijneveld, J. and Schwabe, P., 2018. Faster multiplication in Z2m [x] on Cortex-M4 to speed up 
NIST PQC candidates. Cryptology ePrint Archive, Report 2018/1018, 2018. https://eprint.iacr.org/2018/1018.

• Howe, J., Rafferty, C., Khalid, A. and O'Neill, M., 2017. Compact and provably secure lattice-based signatures in 
hardware. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE.

https://eprint.iacr.org/2018/1018


Useful References: Error Samplers
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• Dwarakanath, N.C. and Galbraith, S.D., 2014. Sampling from discrete Gaussians for lattice-based cryptography on a 
constrained device. Applicable Algebra in Engineering, Communication and Computing, 25(3), pp.159-180.

• Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F. and Verbauwhede, I., 2018. Constant-time discrete gaussian 
sampling. IEEE Transactions on Computers, 67(11), pp.1561-1571.

• Howe, J., Khalid, A., Rafferty, C., Regazzoni, F. and O’Neill, M., 2018. On practical discrete Gaussian samplers for 
lattice-based cryptography. IEEE Transactions on Computers, 67(3), pp.322-334.

• Khalid, A., Rafferty, C., Howe, J., Brannigan, S., Liu, W. and O’Neill, M., 2018, October. Error Samplers for Lattice-
Based Cryptography-Challenges, Vulnerabilities and Solutions. In 2018 IEEE Asia Pacific Conference on Circuits and 
Systems (APCCAS) (pp. 411-414). IEEE.

• Howe, J., Khalid, A., Martinoli, M., Regazzoni, F. and Oswald, E., Fault Attack Countermeasures for Error Samplers in 
Lattice-Based Cryptography. IACR Cryptology ePrint Archive 2019: 206 (2019).

• Schneider, T., Paglialonga, C., Oder, T. and Güneysu, T., Efficiently Masking Binomial Sampling at Arbitrary Orders 
for Lattice-Based Crypto. https://www.emsec.ruhr-uni-
bochum.de/media/seceng/veroeffentlichungen/2019/02/01/crv.pdf

https://www.emsec.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2019/02/01/crv.pdf


Useful References: Hardware Surveys
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• Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I. and Cammarota, R., 2019. Post-Quantum Lattice-Based 
Cryptography Implementations: A Survey. ACM Computing Surveys (CSUR), 51(6), p.129.

• Howe, J., Pöppelmann, T., O'Neill, M., O'Sullivan, E. and Güneysu, T., 2015. Practical lattice-based digital signature 
schemes. ACM Transactions on Embedded Computing Systems (TECS), 14(3), p.41.

• Howe, J., Khalid, A., Rafferty, C., Regazzoni, F. and O’Neill, M., 2018. On practical discrete Gaussian samplers for 
lattice-based cryptography. IEEE Transactions on Computers, 67(3), pp.322-334.

• Khalid, A., Rafferty, C., Howe, J., Brannigan, S., Liu, W. and O’Neill, M., 2018, October. Error Samplers for Lattice-
Based Cryptography-Challenges, Vulnerabilities and Solutions. In 2018 IEEE Asia Pacific Conference on Circuits and 
Systems (APCCAS) (pp. 411-414). IEEE.

• Dwarakanath, N.C. and Galbraith, S.D., 2014. Sampling from discrete Gaussians for lattice-based cryptography on a 
constrained device. Applicable Algebra in Engineering, Communication and Computing, 25(3), pp.159-180.



Useful References: Open Resources
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• Post-Quantum Cryptography - Ruhr-Universität Bochum. https://www.seceng.ruhr-uni-
bochum.de/research/projects/pqc/

• PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

• KECCAK in hardware. https://keccak.team/hardware.html

• PQCzoo. https://pqczoo.com

https://www.seceng.ruhr-uni-bochum.de/research/projects/pqc/
https://github.com/mupq/pqm4
https://keccak.team/hardware.html
https://pqczoo.com/

