
Side Channels: Attacks, Defences, and Evaluation Schemes
Part 2 — Evaluation Techniques

Elisabeth Oswald, James Howe

University of Klagenfurt and University of Bristol

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

2/64

PRINCIPLE OF SIDE CHANNEL ATTACKS FOR KEY RECOVERY

3/64

ATTACK STRATEGIES

Without Profiling

Single trace, multiple targets:
using “visual inspection”

Multiple trace, single target:
aka “Differential Attacks” (DPA, DTA,
DEMA)

With Profiling

Single trace, multiple targets: using belief
propagation, or pragmatic enumeration, ...

Multiple trace, single targets: aka “template
based DPA attacks”

Multiple trace, multiple targets: using belief
prop, combining probabilities

Profiling techniques: pdf estimation (univariate or multivariate, directly going for
parameters, or via regression), ML/DL techniques (supervised and unsupervised)

“Generic Attacks”: using“nominal models” together with “generic distinguishers”

4/64

SIGNAL VS NOISE

A trace consists of many points L = L(S) + R with X, k∗ ⊂ S. Each data point is thus the
“sum” of data depending leakage (aka, signal) and data independent leakage (aka, noise).

One way to define a signal to noise ratio (SNR) is to base it on the variance of the “data
dependent” observable leakage Var(L) over the variance of the “data independent”
observable leakage Var(R):

SNR =
Var(L)

Var(R)
.

(As in [15].) Obviously: the higher the signal in relation to the noise, the better attacks can be
assuming we can exploit the signal.

5/64

THREE MITIGATION STRATEGIES

There are only three known mitigation strategies to counteract the aforementioned attack
strategies: all relate to the SNR.

I Reduce the signal: hiding in hardware
I Increase the noise: masking (and hiding)
I Limit the number of observations: mode level mitigation

Over the years a trend towards “provably secure” countermeasures has emerged in the
literature.

But the fact that a technique comes with a proof does not change the fact it does either
reduce the signal, or increase the noise, or limit the number of observations. No existing
countermeasure makes attacks impossible!

6/64

WORST CASE ATTACK STRATEGIES

All attacks aim to exploit the signal and try and reduce the noise.

Thus the strongest attacks (aka most trace efficient) attacks will
I exploit as much of the available signal (by guessing large chunks of the key, and by

profiling)
I exploit as many targets as computationally feasible (by profiling)
I utilise several traces (to reduce the per-trace-noise and to increase the information

about the key).

There are different ways in which to combine information from multiple targets: all of
them require profiling. The most efficient way (as far as we know) represents an algorithm
as a factor graph and uses message passing to update the belief about the key bytes based
on the leakage observations.

7/64

MULTI TARGET ATTACKS (1)

Multi target: using more than a single target during an attack. “Pedestrian approach” aka
“template based DPA”: we work with a single target but use other targets in the process.

E.g. a masking countermeasure is based on pre-processing masked tables. We first recover
the mask from the preprocessing and then do a single target attack on the S-box, [23].

E.g. some shuffling is implemented and we use profiling to extract information from
multiple targets to reverse engineer the permutation. Then we run a single target attack on
the S-box, [23, 2, 6].

These type of multi target attacks are often called “horizontal attacks” in the literature.

8/64

MULTI TARGET ATTACKS (2)
Or: represent an algorithm as a factor graph and using some message passing on the graph
to extract updated beliefs about the key bytes.

Factor graph for one column of
Mixcolumns.

We can produce factor graphs for a
round or many rounds.

We can exclude nodes which don’t
leak strongly.

No explicit key guessing is necessary. We can exploit every leaking intermediate value.
Can potentially include information about shuffling. Does link to deep learning.

9/64

WORST CASE ATTACK STRATEGIES: GAP

There is a big gap between profiled and non-profiled single target attacks (left figure).

There is a big gap between single target and multiple target attacks (right figure).

Below are figures illustrating these gaps on an AES Furious implementation, running on an
M0.

10/64

MASKING COUNTERMEASURES

Masking amounts to secret sharing all intermediates that depend on key information: i.e.
the state as well as the key state. Each intermediate is represented via multiple shares:
straightforward exploitation is hence impossible. However the joint leakage of shares
reveals the secret!

Masking Security Statements
1. Attacks using less than a defined number of intermediates are provably prevented.

2. The number of leakage observations for successful attacks grows exponentially in the
number of shares.

The first statement relates to proofs in a probing model: over the years there were a
number of refinements and extensions to the “types of probes” leading to more composable
“gadgets”.
The second statement implies that attacks that fully recombine the shares become
exponentially harder.

11/64

MASKING COUNTERMEASURES: SINGLE TARGET ATTACK STRATEGY

Standard single-target differential attack techniques require pre-processing of traces if
masking is used.

Serial leakage: the “mean-free product combining ” of k trace points is the optimal
function if the device leaks the HW.

Parallel leakage: we “shift” the leakage into the first moment by raising trace points to the
power k.

Both techniques imply an exponential increase in the noise variance for the resulting
traces. In the serial leakage case, the resulting traces are also considerable longer!

12/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

13/64

MASKING COUNTERMEASURES: SINGLE TARGET - MULTIPLE TRACE

Chari et al. [7]: an adversary given observations for k shares, can distinguish if the product
distributions (mean free observations, Gaussian assumption, single bit leakage)
corresponding to the unshared value, given (2σ2)k samples. (“single bit DPA style
scenario”)

They also provide a bound for any attack strategy, to succeed with probability α for a
single bit leakage model an adversary needs in the order of σk+4 logα/ log σ traces. But no
computation on the shares is considered.

Thus for masking to work, there needs to be enough noise: e.g. if σ < 1 no noise
amplification can take place.

14/64

MASKING COUNTERMEASURES: MULTI TARGET ATTACKS
Prouff and Rivain [21] eventually provide a more comprehensive and general analysis.
Their results holds in the “noisy leakage model”: they show that the statistical distance
between Pr[X = x] and Pr[X = x|L(x)] (and L is a noisy observation of x with noise σ) is
bounded (i.e. there is a “bounded bias”, L(x) does not reveal everything about x).

In particular they show that the mutual information between (X, K) and {L(xi)} is upper
bounded by cst/σk (cst is some device dependent constant). Assuming perfect
independence of shares and computations on them, and leak free refreshing, and using a
single trace.

Thus if σ ≤ 1 then the mutual information does not decline with an increase of the number
of shares.

Beware that there is no such thing as a “single” σ, SNR, or MI that characterises a
device. Each devices has multiple of these. In software they can be manipulated by
dispatching instructions in a certain order. The setup changes them too.

15/64

MASKING COUNTERMEASURES: MULTI TARGET ATTACKS

The result of Prouff and Rivain [21] was a massive step towards giving hope that masking
would even withstand sophisticated adversaries. But what is cst?

[21] assumes that a constant exists for each target (i.e. a k-tuple of shares), and that each
intermediate is independent (i.e. remasking and the remasking is leak free). The constants
then “sum up” to an overall “constant” (see Theorem 4 of their paper): Ncst/σk.

The sum goes over all the intermediates, and the number of partial products in fact
increases quadratically with the number of shares, thus N includes a quadratic factor.

Therefore the numerator gets much much larger for a multi target attack: unsurprisingly,
because more shares mean more leakage!

16/64

MASKING COUNTERMEASURES: MULTI TRACE AND MULTI TARGET

ATTACKS
For low masking orders and low noise, a multi target approach becomes a serious threat:
[2] demonstrate this clearly; the noise amplification is partially offset by a (smaller)
amplification of the signal.

Naturally extending multi target attacks to utilise multiple traces makes them even more
efficient (again shown in [2]): Ncst/

√
σ/nt

k
. The effect of more sophisticated multi target

approaches using belief propagation was studied heuristically in [12] and empirically in
[11].

So the bound on the MI, which inversely translates to the number of required traces
(=effort) for an adversary changes from:

single target - multiple trace multiple target - single trace multiple target - multiple trace
cst
σk

N·cst
σk

N·cst
(σnt)

k

17/64

MASKING: SECMULT (AKA ISW)

The SecMult gadget (Alg. 1):
(d + 1)2 multiplications,
2d(d + 1) additions, and
d(d + 1)/2 fresh random values.

With SecMult a finite field inversion costs: 8d2 + 12d additions, 4d2 + 8d + 4
multiplications, 3d + 3 squarings, 2d2 + 4d randomness and 0.5d2 + 3.5d + 3 bytes of
memory.

Sequential execution: enables a multi target attacks. [2] use leakage from touching each
share multiple times (“horizontal” attack, it increases the nt from the previous slide).

Using factor graphs [5] demonstrate that in a high SNR regime the “exponential” increase
is very slow. For 2, 3 shares less than 10 traces are always sufficient. 18/64

WORST CASE ADVERSARY: GAP
ANSSI released open source implementations: e.g. a very simple masked AES that also
employs some simple hiding strategy. Similar to implementations analysed before [22, 23].

They provide an analysis based on TVLA (which we will discuss later): it is found to be
secure against TVLA with 100k traces.

Bronchain et al. break this implementation easily: without belief propagation using 2k
traces, with belief propagation using a single trace.

19/64

MASKING IN HARDWARE

Existing (i.e. deployed by industry) logic styles try to ensure uniform power consumption
by a 2-share representation.

Masked logic was considered early on, and is now seeing a revival due to a better
understanding of of how to deal with glitches (not just per design but also via improved
proof techniques).

But the cost of the resulting masked gates is extraordinary! And more than 2/3 shares are
required as security against DPA (aka single target non profiled attacks) is not sufficient for
high protection levels. And tooling needs to integrate with existing design flows.

The security industry is very successfully producing devices with very high protection
levels, combining logic styles and software countermeasures. Is there an industrial need
for a standardised masking scheme for hardware?

20/64

STANDARDISED MASKING?
Several important questions were raised at the workshop in 2020 relating to the idea of
standardising a masking scheme for AES.

Standardisation of masking seems difficult: you need to ensure a low enough SNR
throughout, the number of shares must depend on your SNR (which you might not know a
priori), tooling needs to fit design flows, testing needs to be deviced, ... ?

Verification and/or testing requirements are imperative: the methodology included in the
standard must be sound and does not under(/over)estimate the security of the target
implementation. If standardised, it could have a strong impact on certification procedures.

Standardising just the masking scheme: it’s a bit like saying “here is a blue print for a
round function, but we don’t know how much key material is required, we don’t know how
many rounds you need, and we can’t give you any test vectors’.

21/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

22/64

HOW TO BEST MEASURE THE SUCCESS OF AN ATTACK?

A simple way is to “fix a distinguisher” and then compare the outcomes.

For univariate differential attacks (single target, multiple trace), the correlation coefficient
is very well suited (normalised, it scales easily with noise, well understood behaviour, can
use non-linear models).

For multivariate attacks the correlation cannot be used anymore: alternatives are the MI
and the SNR.

Empirical estimation of the MI can be problematic (no convergence guarantee for pdf
based estimation), but lot’s of connections to masking theory.

23/64

SHORTCUTS VS ATTACKS

It is possible to calculate various distinguisher scores based on characterising a device (i.e.
a priori estimation of the leakage function(s)).

Together with knowledge of the behaviour of the target it is then possible to compute the
likely outcome of a differential attack.

Knowing the distribution of the distinguisher output for the correct and incorrect keys
enables then (using a bit of statistical trickery) to predict how many side channel
observations are needed in practice.

These lead to so-called shortcut formulas. A nice overview with some implementation
examples can be found on the REASSURE website reassure.eu (under deliverables
and tools).

Another type of shortcut would be leakage detection.

24/64

reassure.eu

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

25/64

ATTACK SUCCESS (1)

It should be clear that different types of practical attacks perform differently w.r.t. the
number of observations needed to “succeed”, memory requirements, time, etc.

What is “success”? In the context of embedded systems, taking power and EM as side
channels, we nearly always care about key recovery attacks.

Metric: Success Rate (SR)

We call an attack strategy successful if the highest ranked key is indeed the secret key.
The key recovery success rate (SRN) is the probability with which the attack strategy is
successful given N side channel observations corresponding to different inputs.

26/64

ATTACK SUCCESS (2)
A sensible criticism of the SR is that it ignores the capability of adversaries to use partial
information that becomes available after an attack: perhaps the secret key does not have
the “highest score” but it may be among the high ranked key candidates.

Metric: o-th order SR

We call an attack strategy successful if the secret key is among the o top ranked keys.
The o-th order key recovery success rate (o − SRN) is the probability that the attack
strategy is successful given N side channel observations corresponding to different inputs.

Metric: Key Rank (KR)

The key rank (KR) is the actual position of the secret key in the sorted list of all key
candidates. We call an attack using N observations successful if KRN is below some set
bound.

(Definition is adapted from [17].)
27/64

RANKING ENTROPY
Thus the key rank of a single experiment is not meaningful in itself. The key rank naturally
links to the guessing entropy: GE = E(KR).

But interesting key ranks can be large, thus to compare attacks meaningfully, we want to
compare “log ranks” (e.g. suppose among 1024 attacks, 1023 put the key at place 1 and
one single attack returns 232, the mean rank would then be 222).

Metric: Ranking Entropy

The ranking entropy RE is a faithful representative of the remaining effort of a side
channel adversary.

RE = E(log KR).

It is imperative to realise that log and E do not commute. An alternative to taking mean
logs is to compute the median.

28/64

RANKING ENTROPY: PRACTICAL CONSIDERATIONS

Ranks from a hardware AES.

Observe the gap between best and
worst ranks.

280 was reported as the cutoff by
JHAS for failing a device.

Number of traces
E

st
im

at
ed

 ra
nk

 (l
og

2)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

20

40

60

80

100

120 Median rank
Min / max observed rank

29/64

RANKING ENTROPY: PRACTICAL CONSIDERATIONS

[17] show that at least 50 experiments are required for the ranking entropy to stabilise;
about 100 experiments give a good approximation of the ranking entropy.

They also show that ranks int the 240 and 280 range have the highest variance, and their
variance is very large (they observed up to ±20 bits). The variance seems most dependent
on the rank itself, not on the SNR.

The fastest rank implementation (to the best of my knowledge) is by Mather:

bits sec bits sec
128 0.005 1024 1
256 0.05 2056 10
512 0.5 4096 100

30/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

31/64

KEY ENUMERATION

One can turn key ranking algorithms into key enumeration algorithms: i.e. we order and
test keys, in order to find the secret key: powerful way to improve attack outcomes.

[14] show that enumerating 248 keys is easy within 30hrs on a University cluster. (We kept
on playing and our current estimate is that we could do 256).

From my perspective: any attack that leads to less than 248 enumeration effort should
count as a complete break (as we could do this years ago on University resources).

Realistic attacks (from a nation state adversary) could probably do 260. Thus the 280 bound
that was allegedly set by JHAS seems sound.

32/64

KEY ENUMERATION: POST QUANTUM

[18] show that it is possible to non-trivially combine Grover and key enumeration: i.e.
we can leverage the square root speed up of Grover and simultaneously use the sorted list
produced from side channel scores!

Quantumly key enumeration would pass on “batches of keys” to an implementation of
Grover that would require a quantumly AES oracle.

A cut-off at 280 would not be safe post quantum: with Grover this reduces to 240.

The more conservative cut-off of 2100, which is also sometimes attributed to some
European countries, would also not be safe post quantum.

33/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

34/64

DETECTION VS ATTACKS

Any successful attack detects leakage. But it detects “specific” leakage, i.e. leakage that is
due to the target(s).

Thus attempting to detecting all leaks via attacks would imply that every intermediate
and/or any combination would need to be attacked: this is way too time consuming!

Alternative: “non-specific” leakage detection. We attempt to find all/any key dependent
behaviour in the leakage traces.

CRI (now Rambus) proposed to find any data dependency via the so-called “Test Vector
Leakage Assessment” (TVLA) in the form of “fixed vs random” tests.

35/64

TVLA

Fixed vs Random: in relation to inputs. Thus you detect lot’s of data dependency, but you
couldn’t find the key schedule.

Engineering Guidelines: very helpful to minimise creating bias during the assessment.

Univariate Statistics: based on univariate t-statistic . . . sadly without any reference to how
to account for the fact that there are many correlated leakage points, thus leading to a
serious “multiple comparison” problem.

Moment Specific: You can only detect leaks that sit in a central moment of a distribution.

False Positives: the threshold for false positives is set very low to minimise false positives,
probably to account for the multiple comparison issue. But this implies, unless sufficiently
many traces are used, a low probability to detect leaks.

36/64

UNIVARIATE “SINGLE VARIABLE” LEAKAGE DETECTION

TVLA is a great (i.e. quick) way to detect leaks that you suspect to be there, or to show
that your masking implementation is not trivially insecure [19].

But it is ill suited as a comprehensive form to assess leakage, in particular in a black box
setting:
I It is a univariate test that can only detect differences in the central moment of a

distribution.
I Varying the plaintext creates unnecessarily many false positives.
I Complete lack of guidance to correctly configure the test: the α level is provided, but

without knowing the effect size, it is impossible to select the number of traces to get a
good 1− β.

I No acknowledgment of the multiple comparison problem and how to account for it.
I Weak link with non-profiled differential attack: typically a DPA attack using

correlation and a HW model will require much less traces to reveal a leak.

37/64

UNIVARIATE “SINGLE VARIABLE” LEAKAGE DETECTION

ISO 17825 (which seems to be the basis for side channel evaluation in the context of
symmetric crypto) within FIPS 140-3, instantiates TVLA, and gets tripped up by its lack of
clarity in terms of configuration.

[24] show how ISO 17825 makes things worse and make suggestions for a saner form of
configuring the statistical parameters.

Industry is equally concerned about the use of any TVLA style test in the context of a
black box evaluation [10].

But no “singe variable” test can answer the question “does x contribute to leakage” (it can
only tackle the much narrower question “does x alone leak”).

38/64

UNIVARIATE “SINGLE VARIABLE” LEAKAGE DETECTION: PUBLIC KEY

SETTING
The situation is even worse for a potential use in public key implementations due to the
increase in trace length.

There is a multi-variate counterpart (Hotellings) but it assumes independence (which is
obviously violated); [4] investigate this. MI could be an alternative to detect leaks that are
not in central moments [19].

This can also be seen in the PQ setting: the vulnerability of the FO transform against
side-channel attacks is known and the difficulty to protect it.

While TVLA or other similar leakage detection techniques will mostly likely deem any
high order masked implementation secure, the leakage present in the FO transform and
magnified by chosen inputs is highly multivariate and yet very easy to exploit by an
attacker.

39/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

40/64

SOUND LEAKAGE ASSESSMENT REQUIRES A PRIORI KNOWLEDGE

White-box setting: if a device is fully characterised, and the implementation is known then
perhaps a sound statistical testing regime could be established.

Leakage simulators might offer an “economic” middle ground for evaluations that need to
be cheap: rather than open sourcing a processor, an accurate leakage model could be open
sourced, and used to test software implementations.

ELMO (and GILES) [20] provides quite accurate power leakage models of the processor
core of an M0 and and M3 (as well as an M4 but based on EM traces). But because the
memory runs asynchronously their leakage model of the memory is not accurate (ROSITA
does not do any better).

But devices of the same architecture can have subtly different leaks (as ELMO shows by
providing multiple models for an M3), and which is well demonstrated in [16].

41/64

LEAKAGE ASSESSMENT BENEFITS FROM WORST CASE ADVERSARIES
In [1] we argue (based on 3 years of work with evaluators, hardware developers,
integrators and certifiers) that basing evaluations on “worst case adversaries” is actually a
very useful thing.

Worst case adversary: can enumerate, can use multiple targets (if available), multiple
traces, knows implementation details, controls inputs/key, controls randomness, thus either
can profile or has access to profiling data.

Worst case adversaries represent long term security goals: evaluators don’t have the
time/budget to do a lot of reverse engineering, but a determined adversary will (potentially
using multiple devices, and further attack strategies including faults) eventually be able to
create a reasonably good leakage model.

Thus giving an evaluator the information so they can do a worst case attack is cost efficient
and it enables to judge the long term security of a device/implementation. They can also
assess the “gap” via a “backwards evaluation”.

42/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

43/64

SECURITY ESTIMATIONS USING SIDE CHANNEL INFORMATION

Integrating side-channel information into security estimates could be one method for
considering SCA into real-world applications [14, 8, 13].

This can be used to accommodate the many use-cases where one anticipates, expects, or
even allows some side-channel information loss/leakage on a device in the wild.
I Similar to how DPA-resistant cores1 ‘guarantee’ no leakage up to 100m traces using

TVLA.
I One could potentially integrate bounds into SCA-secure implementations, allotting

some ‘wiggle-room’ for adversarial gains in SCA.

How do we integrate this into post-quantum cryptography security estimates?

1
https://www.rambus.com/security/dpa-countermeasures/dpa-resistant-core/

44/64

https://www.rambus.com/security/dpa-countermeasures/dpa-resistant-core/

LWE WITH SIDE CHANNEL INFORMATION [8]2,3

In the cryptanalysis of lattice-based cryptography, we might be in two camps:

(1) Lattice reduction
via primal attack.
Cost: β block size of BKZ.
Models: say, 128 bits of ‘work’
needed for key recovery.

(2) Side-channel attack
via, let’s say, DPA.
Cost: X number of traces.
Models: say, 100 power traces
needed for key recovery.

Consider an example where we might be in the middle:
I We may only have access to, say, 20 power traces, and we can’t run a full key

recovery attack.
I We can run a hybrid attack instead, to essentially decrease bit security.

2
https://www.youtube.com/watch?v=wCaLcbWnwDI&ab_channel=TheIACR

3
https://www.youtube.com/watch?v=RRMtKtbx1Yo&ab_channel=SimonsInstitute

45/64

https://www.youtube.com/watch?v=wCaLcbWnwDI&ab_channel=TheIACR
https://www.youtube.com/watch?v=RRMtKtbx1Yo&ab_channel=SimonsInstitute

LWE WITH SIDE CHANNEL INFORMATION

Side-channel information (or hints) can be integrated into lattice reduction in four ways:

(1) Perfect hints:
〈s, v〉 = `.
(Learning inner product).

(2) Modular hints:
〈s, v〉 = ` mod k.
(Same as (1) but mod integer).

(3) Approx. hints:
〈s, v〉 ≈ `.
(Similar to (1) but with an error).

(4) Short vector hints:
v ∈ Λ.
(Info on the lattice, not the secret).

The hints range from (1) helpful, to (4) less helpful.

One ‘embeds’ hints into an instance of (D)BDD to decrease its hardness.

46/64

EXAMPLES OF HINTS

A toy example of this in practice.

Say our secret si ∈ {−5, . . . , 5}, from power analysis learn HW(s0) = 2.

Thus we know si ∈ {3, 5}, this can be encoded as either:
I A modular hint, where 〈s, (1, 0, . . . , 0)〉 = 1 mod 2.
I Or an approximate hint, where 〈s, (1, 0, . . . , 0)〉 ≈ 4, with variance 1.

47/64

EXAMPLES OF HINTS

An example with a real target. This framework was used from data of a previous attack [3]
on FrodoKEM. The paper consisted of two single-trace attacks, one of which was too
weak for key recovery.

NIST1 NIST2 CCS1 CCS2
Attack without hints (bikz) 487 708 239 448
Attack with hints (bikz) 337 471 190 297
Attack with hints & guesses (bikz) 298 403 126 110
Number of guesses 100 250 200 300
Success probability 0.86 0.64 0.87 0.77

Table: Cost of the attacks with/without hints and with/without guesses.

One might say that bikz values around 100 are computable in practice.

48/64

EXAMPLES OF HINTS

The framework also uses examples of two other use-cases.

Decryption failure results [9] are reproducible using this framework, observing similar
degradation in security given an increase in the number of decryption failures.

Also, some real-world schemes (LAC, Round5, and NTRU) used fix-weight ternary
secrets, i.e., si ∈ {−1, 1}, which can be embedded as perfect hints.
This reduces the block size by either 1, 2, or 3.

49/64

INFORMATION-SET DECODING WITH HINTS

A similar result [13] was also found for code-based cryptography, namely incorporating
small leakages into information-set decoding (ISD) algorithms.

These hints are actually used when solving the (n, k, t)-syndrome decoding problem
(SDP), for length n, dimension k, and error weight t.

The work analyses Classic McEliece, BIKE, and HQC, giving the number of hints
required to reduce the claimed security level.

e.g., for mceliece348864, the work factor is reduced below 2128 for 175 known message
entries, 9 known error locations, 650 known error-free positions, or known Hamming
weights of 29 sub-blocks of roughly equal size.

50/64

HOW CAN HINTS AFFECT EVALUATIONS?

Can tools like this be used in evaluations where SCA is an important consideration?

e.g. remaining x-bits secure, after giving away y-information, (via attack type z).

Might we have alternative parameter sets for schemes assuming this y-information loss?

51/64

ROADMAP

Short Recap and Focus on Masking
Attacks, SNR, Countermeasures
Masking: exponential increase

Measuring attack success
Correlation vs MI vs SNR
Success Rate vs Key Rank vs Ranking Entropy
Key Enumeration

Leakage detection vs/aka Leakage assessment
Leakage Detection Tests
Leakage Assessment
Leakage Assessment for PQ
Certification Regimes

Conclusions

52/64

FIPS 140-3 VS CC (JHAS)

FIPS 140-3
no profiling
sym. crypt: detect and stop
asym. crypt: SPA/DPA
levels by num traces (detection)

CC (JHAS)
mandatory profiling (try DL)
attack potential
attack vectors
part white box

IMHO they only care about “physical leakage”. The biggest concern is cost.

CC is close to the worst case adversary approach. BSI (Germany) now rewrites their
guidelines (widely used for CC evaluations) to take the worst-case adversary approach
better into account.

Detection in 17825 is flawed, without some form of “white box” is cannot work. Number
of traces for non-specific detection not immediately linked with number of traces for
attacks (even for standard DPA).

53/64

COST EFFECTIVE EVALUATIONS: PROCEDURAL

Procedural point of view: make certification regimes more modular so certificates can be
“reused”.

SESIP: “Security Evaluation Standard for IoT Platforms”, pushed by GlobalPlatform,
methodology to integrate certificates from different regimes under a common framework
(aka plug and play or a Lego approach). Works under the CC framework (protection
profiles).

Interesting recent example: company X who produces processor IP cores gets an
evaluation of EAL6 (under CC) for their “processor”. But they don’t manufacture
processors. And if you read into the certificate then it becomes clear that if that IP was
integrated, then the integration would need to be evaluated and assuming all works out this
would lead to EAL4.

54/64

COST EFFECTIVE EVALUATIONS: TECHNOLOGICAL

Technological point of view: make technical changes to increase the speed of evaluations
and increase the confidence in their outcomes.

I worst case adversary: fully white box for the evaluator plus full control over the
device; also gives long term security guarantees

I “standardised” leakage emulators with standardised statistical tests for evaluating
software: not fully white box w.r.t. the hardware, enables to give full control, could
perhaps be automated

I “standardised” HW architectures that support countermeasures and provide a low
enough SNR, together with tooling that creates “provably” secure implementations

55/64

CONCLUSIONS

I Any attack strategy manipulates the SNR. Any countermeasures manipulates the
SNR.

I Multi-Trace Multi-Target attacks (aka SASCA, aka horizontal attacks) make most of
the signal, whilst averaging out the noise.

I Multi-Trace Multi-Target attacks are our best approximation of the “worst case
adversary”.

I We have no idea if any specific crypto architecture is truly “better” with regards to
leakage.

I But crypto that is efficient and enables a single type of masking is seen as preferable
today.

I To enable more secure crypto implementations we need: less leaky hardware and
better tooling.

56/64

CONCLUSIONS
You asked “what could NIST do?”

Consider a competition for:
I a “security friendly” open source processor
I a “side channel countermeasure enabling instruction set” for an existing open source

processor
I a “leakage assessment framework” (i.e. concept and tooling) for some existing (open

source) processors
I a “generic implementation framework” (i.e. countermeasure instantiation and

assessment) for e.g. symmetric encryption on a 32-bit (or 8-bit) platform
Security against side channel adversaries is enabled (and limited) by the hardware.

We urgently need open source hardware that enables security: low SNR, instructions
to support countermeausures, full characterisation/leakage emulators for early
assessment.

57/64

READING MATERIAL I

[1] M. Azouaoui, D. Bellizia, I. Buhan, N. Debande, S. Duval, C. Giraud, É. Jaulmes,
F. Koeune, E. Oswald, F. Standaert, and C. Whitnall.
A systematic appraisal of side channel evaluation strategies.
In SSR 2020.

[2] A. Battistello, J. Coron, E. Prouff, and R. Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In CHES 2016.

[3] J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam.
Assessing the feasibility of single trace power analysis of frodo.
In SAC 2018.

[4] O. Bronchain, T. Schneider, and F. Standaert.
Multi-tuple leakage detection and the dependent signal issue.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019.

58/64

READING MATERIAL II

[5] O. Bronchain and F. Standaert.
Breaking masked implementations with many shares on 32-bit software platforms or
when the security order does not matter.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021.

[6] O. Bronchain and F. Standaert.
Side-channel countermeasures’ dissection and the limits of closed source security
evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020.

[7] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi.
Towards sound approaches to counteract power-analysis attacks.
In CRYPTO 99,.

59/64

READING MATERIAL III

[8] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi.
Lwe with side information: attacks and concrete security estimation.
In CRYPTO ’20.

[9] J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede.
On the impact of decryption failures on the security of lwe/lwr based schemes.

[10] F. Deboyser, M. Hinkelmann, and V. Vernuil.
A journey towards side-channel attack resistances.
Invited Talk at ICMC21.

[11] J. Green, A. Roy, and E. Oswald.
A systematic study of the impact of graphical models on inference-based attacks on
AES.
In CARDIS 2018.

60/64

READING MATERIAL IV

[12] Q. Guo, V. Grosso, F. Standaert, and O. Bronchain.
Modeling soft analytical side-channel attacks from a coding theory viewpoint.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020.

[13] A.-L. Horlemann, S. Puchinger, J. Renner, T. Schamberger, and A. Wachter-Zeh.
Information-set decoding with hints.
Cryptology ePrint Archive, Report 2021/279, 2021.

[14] J. Longo, D. P. Martin, L. Mather, E. Oswald, B. Sach, and M. Stam.
How low can you go? using side-channel data to enhance brute-force key recovery.
IACR Cryptol. ePrint Arch., 2016.

[15] S. Mangard, E. Oswald, and T. Popp.
Power analysis attacks: Revealing the secrets of smart cards .
Springer, 2007.

61/64

READING MATERIAL V

[16] B. Marshall, D. Page, and J. Webb.
MIRACLE: micro-architectural leakage evaluation.
IACR Cryptol. ePrint Arch., 2021.

[17] D. P. Martin, L. Mather, E. Oswald, and M. Stam.
Characterisation and estimation of the key rank distribution in the context of side
channel evaluations.
In ASIACRYPT 2016.

[18] D. P. Martin, A. Montanaro, E. Oswald, and D. J. Shepherd.
Quantum key search with side channel advice.
In SAC 2017.

62/64

READING MATERIAL VI

[19] L. Mather, E. Oswald, J. Bandenburg, and M. Wójcik.
Does my device leak information? an a priori statistical power analysis of leakage
detection tests.
In ASIACRYPT 2013.

[20] D. McCann, E. Oswald, and C. Whitnall.
Towards practical tools for side channel aware software engineering: ’grey box’
modelling for instruction leakages.
In USENIX Security 2017.

[21] E. Prouff and M. Rivain.
Masking against side-channel attacks: A formal security proof.
In EUROCRYPT 2013,.

63/64

READING MATERIAL VII

[22] S. Tillich and C. Herbst.
Attacking state-of-the-art software countermeasures-a case study for AES.
In CHES 2008.

[23] M. Tunstall, C. Whitnall, and E. Oswald.
Masking tables - an underestimated security risk.
In FSE 2013.

[24] C. Whitnall and E. Oswald.
A critical analysis of ISO 17825 (’testing methods for the mitigation of non-invasive
attack classes against cryptographic modules’).
In ASIACRYPT 2019.

64/64

	Short Recap and Focus on Masking
	Attacks, SNR, Countermeasures
	Masking: exponential increase

	Measuring attack success
	Correlation vs MI vs SNR
	Success Rate vs Key Rank vs Ranking Entropy
	Key Enumeration

	Leakage detection vs/aka Leakage assessment
	Leakage Detection Tests
	Leakage Assessment
	Leakage Assessment for PQ
	Certification Regimes

	Conclusions

