
#RSAC

SESSION ID:

SoK: How (not) to Design and Implement Post-Quantum
Cryptography

CRYP-W13A

Thomas Prest

Senior Cryptography Researcher
PQShield
https://tprest.github.io/

James Howe

Cryptography Engineer
PQShield
https://jameshowe.eu/

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

This SoK: a transversal survey of post-quantum
cryptography

2

Most works focus on (one aspect of) one family:

Lattices:

Codes:

Isogenies:

etc.

We tried to abstract away the family, and focus on the process:

Family X:

LWE, SIS, etc. Falcon, Kyber, etc. Implementation Deployment

SD, RSD, etc. McEliece, Wave, etc. Implementation Deployment

SSDDH, CSIDH, etc. SIKE, CSIDH, etc. Implementation Deployment

Assumption Scheme Implementation Deployment

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Plan

3

This talk:

The paper:

The ePrint:

Our goals

Survey essential works

Establish trends and patterns

Provide `` lessons learned ’’

Assumption Scheme Implementation Deployment

Assumption Scheme Implementation Deployment

Assumption Scheme Implementation Deployment

#RSAC

#RSAC

Theory and Design of Schemes

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

5

CLASSICAL SCHEMES

Classical Schemes

Signature

Fiat-Shamir
(EC)DSA

(FIPS 186)

Hash-then-Sign
RSA Signatures

(FIPS 186)

Key Establishment

Diffie-Hellman
ECDH

(SP 800-56A)

Public Key
Encryption

RSA Encryption
(PKCS #1)

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

6

MOST POST-QUANTUM SCHEMES -
(L)ATTICES, (C)ODES, (I)SOGENIES, (M)ULTIVARIATE, (O)NE-WAY FUNCTIONS

Post-Quantum Schemes

Signature

Fiat-Shamir

Dilithium (L)

MQDSS, PKPDSS (M)

Picnic, Banquet (O)

Stern signatures, Durandal (C)

Hash-then-Sign

Falcon (L)

Rainbow, GeMSS (M)

Key Establishment

Diffie-Hellman SIDH (I)

Public Key Encryption

FrodoKEM, Kyber, Saber (L)

BIKE, Classic McEliece, HQC (C)

https://pq-crystals.org/
http://mqdss.org/
https://ia.cr/2018/714
https://microsoft.github.io/Picnic/
https://ia.cr/2021/068
https://doi.org/10.1007/3-540-48329-2_2
https://ia.cr/2018/1192
https://falcon-sign.info/
https://www.pqcrainbow.org/
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://ia.cr/2011/506
https://frodokem.org/
https://pq-crystals.org/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://bikesuite.org/
https://classic.mceliece.org/
https://pqc-hqc.org/

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

``Just apply one of these four paradigms to your
favourite problem’’ ? Not so simple.

7

These paradigms are useful guidelines, but they are no panacea.
– Rigidly applying a paradigm may result in an inefficient scheme or a

broken assumption.

– It is more important to preserve the security proof than the paradigm.

Most efficient schemes tweak paradigms to fit the assumption.
– Full-domain hash without permutations (see next slide)

– Fiat-Shamir with aborts and further refinements [Lyu09,BG14,Dilithium]

– Various soundness-amplification tricks [DG19,KKW18]

See the paper for a complete discussion.

https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://ia.cr/2013/838
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://ia.cr/2018/824
https://ia.cr/2018/475

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Example: Full-Domain Hash Signatures

8

Message
msg

c=H(msg)
Signature

sig
H

𝑔𝑠𝑘

𝑓𝑝𝑘

We say that the pair (𝑓𝑝𝑘: 𝑋 → 𝑌, 𝑔𝑠𝑘: 𝑌 → 𝑋) is a trapdoor permutation if:

1. Given only 𝑝𝑘, it is computationally hard to invert 𝑓𝑝𝑘 on (almost) all inputs.

2. 𝑓𝑝𝑘°𝑔𝑠𝑘 is the identity over 𝑌, and 𝑋 = 𝑌 (hence 𝑓𝑝𝑘 and 𝑔𝑠𝑘 are permutations).

Canonical example: RSA signatures [RSA78] and its many variants.
Provable security is well-studied [BR96,Coron00].

https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://www.cs.ucdavis.edu/~rogaway/papers/exact.pdf
https://www.iacr.org/archive/crypto2000/18800229/18800229.pdf

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Can we transpose this to the post-quantum setting?

9

Initial attempts: GGHSign [GGH97](lattices), [CFS01](codes),
NTRUSign [HHPSW03] (lattices)
– CFS’01: poor scalability of parameters

– GGHSign and NTRUSign:
(𝑓𝑝𝑘, 𝑔𝑠𝑘) was not a trapdoor permutation.

The usual security proof did no longer apply

Worse, each signature leaked information
about the signing key 𝑠𝑘, leading to practical
attacks [NR06,DN12].

https://ia.cr/1996/016
https://ia.cr/2001/010
https://doi.org/10.1007/3-540-36563-X_9
https://iacr.org/archive/eurocrypt2006/40040273/40040273.pdf
https://www.iacr.org/archive/asiacrypt2012/76580428/76580428.pdf

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Solution: relaxing the notion of trapdoor permutation

10

Gentry-Peikert-Vaikuntanathan [GPV08]:
– Trapdoor preimage sampleable functions (TPSF)
– Weaker than trapdoor permutation

Can be instantiated from lattices (but not codes)
Still strong enough for a security proof

A further relaxation [DST19,CGM19,CD20]:
– Average TPSF
– Can be instantiated from codes and lattices

Trapdoor permutation ⇒ TPSF ⇒ Average TPSF (⇒ ?)

Examples: Falcon [FHK+17] (TPSF, lattices), Wave [DST19] (Average
TPSF, codes)

https://ia.cr/2007/432
https://ia.cr/2018/996
https://ia.cr/2019/1029
https://ia.cr/2020/006
https://falcon-sign.info/
https://ia.cr/2018/996

#RSAC

#RSAC

Implementation

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

An Overview of PQC Implementations

12

Transitioning to PQC will be tough.

PQC will bring many new and unique challenges.
– Larger public/secret keys, signs, ciphertexts.

– Needs more resources; time, hardware, energy.

– New operations and paradigms.

Implementations will be more complex.
– Rejection sampling,

– Sampling non-uniform distributions,

– Decryption failures, etc.

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Implementation Attacks on PQC

13

Many initial implementations not isochronous.
– Timing leakage [Str10,AHP+12,Str13,ELP+18,EFG+17].

– FLUSH+RELOAD cache attacks [BHL+16,PBY17].

– Data-dependent branching / branch tracing [EFG+17].

Recent attacks exploit implementation mistakes.
– Non-isochronous memcmp() in FO transform [GJN20].

– Errors in domain separation in FO [BDG20].

Fixable by following secure coding practices.

https://link.springer.com/chapter/10.1007/978-3-642-12929-2_8
https://link.springer.com/article/10.1007/s13389-011-0026-7
https://eprint.iacr.org/2011/683
https://eprint.iacr.org/2018/256
https://eprint.iacr.org/2017/505
https://eprint.iacr.org/2016/300
https://eprint.iacr.org/2017/490
https://eprint.iacr.org/2017/505
https://eprint.iacr.org/2020/743
https://eprint.iacr.org/2020/241

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Side-Channel Attacks on PQC

14

A talk on this topic has been done [AH21].

Power analysis targets secrets via:
– Matrix multiplication [ATT+18,PSK+18,BFM+19].

– Polynomial multiplication [HCY20].

– Syndrome decoding [RHH+17,SKC+19].

Also, fault, cold-boot, and key reuse attacks.

Side-channel “hints” for security evaluations.
– For lattice reduction [DDG+20] and ISD [HPR+21].

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://ieeexplore.ieee.org/document/8383894
https://tches.iacr.org/index.php/TCHES/article/view/7284
https://eprint.iacr.org/2018/687
https://eprint.iacr.org/2019/100
https://eprint.iacr.org/2017/596
https://tches.iacr.org/index.php/TCHES/article/view/8349
https://eprint.iacr.org/2020/292
https://eprint.iacr.org/2021/279

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Masking and Hiding in PQC

15

We’ve only just begun protecting these schemes.

So far, only masked Saber, Kyber and Dilithium.
– First-order [MGT+19], higher-order [BDK+19,BGR+21].

Countermeasures also not a guarantee.
– QcBits masking [RHH+17] was attacked [SKC+19].

– Masked comparison [BPO+20] was attacked [BDH+21].

Hedging mitigates faults for Fiat-Shamir signs [AOT+20].

https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2019/394
https://eprint.iacr.org/2021/483
https://eprint.iacr.org/2017/596
https://tches.iacr.org/index.php/TCHES/article/view/8349
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2019/956

Presenter’s Company

Logo – replace or

delete on master slide

#RSAC

Benchmarking PQC

16

Evaluate performances in SW, HW, and SCA.
– On ARM Cortex M4 and Xilinx Artex 7 FPGA.

Plenty of repos exist for SW benchmarking.
– PQClean, pqm4, SUPERCOP, etc.

Seed expanding in pqm4 can take >50% runtime [KRS+19].

Lots of HW designs exist, too.
– With a large variety in resources/performance.

https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4
https://bench.cr.yp.to/supercop.html
https://eprint.iacr.org/2019/844

#RSAC

#RSAC

Thank you!

Full paper: https://eprint.iacr.org/2021/462

