
Benchmarking and Analysing NIST PQC Lattice-Based
Signature Scheme Standards on ARM Cortex M7

James Howe
Senior Research Scientist

4th NIST PQC Standardization Conference

© SB Technology, Inc. SandboxAQ Proprietary Material

01 Introduction and Motivation

02 Benchmark and Profile Results

03 Constant-Time Issues

CONTENTS

INTRODUCTION AND
MOTIVATION

01

© SB Technology, Inc. SandboxAQ Proprietary Material

What are the PQC standards we have?

origin

b1
b2

shortest vector

CRYSTALS-Kyber is the only KEM and
CRYSTALS-Dilithium is the primary signature.

“The security of Kyber has been thoroughly
analyzed [...] based on a strong framework of
results in lattice-based cryptography. Kyber

has excellent performance overall in software,
hardware and many hybrid settings.”

“Dilithium is a signature scheme with high
efficiency, relatively simple implementation, a

strong theoretical security basis, and an
encouraging cryptanalytic history.”

“
”

© SB Technology, Inc. SandboxAQ Proprietary Material

What are the PQC standards we have?

Falcon, also from
lattices, different

performance profile.

More complex
implementation,
emulates or uses

FPU.

Offers significantly
smaller signature

sizes and
fast verification.

Falcon was chosen for standardization because NIST has confidence in
its security (under the assumption that it is correctly implemented) and
because its small bandwidth may be necessary in certain applications.

We also have two other PQ signatures:

“

© SB Technology, Inc. SandboxAQ Proprietary Material

The Premise

“NIST understands that some applications
will not work as they are currently designed
if the signature and the data being signed
cannot fit in a single internet packet.”

“For this reason, NIST decided to standardize
FALCON as well. Given FALCON’s overall
better performance when signature
generation does not need to be performed
on constrained devices, many applications
may prefer to use FALCON over Dilithium,
even in cases in which Dilithium’s signature
size would not be a barrier to
implementation.”

”

© SB Technology, Inc. SandboxAQ Proprietary Material

Current State on ARM Cortex M4

Thus we get performance profiles like this on
Cortex M4.

But can we get this closer using similar device with
full FPU?

We wanted to challenge this belief that Falcon
signing is much slower than Dilithium.

Important decision in, e.g., RISC-V CPU and SoC
implementations.

Without double precision,
Falcon emulates floats.

Also, does FPU open questions on constant time?

© SB Technology, Inc. SandboxAQ Proprietary Material

What’s the big deal?
Constant-time and Correctness

Emulated floating-point
implementation can be done

Only using integer operations
with uint32_t and uint64_t types

This is constant-time, provided that the underlying platform offers constant-time
opcodes for:

• Multiplication of two 32-bit unsigned integers into a 64-bit result.

• Left-shift or right-shift of a 32-bit unsigned integer by a potentially secret shift
count in the 0...31 range.

01 02

03

© SB Technology, Inc. SandboxAQ Proprietary Material

Why the ARM Cortex M7?

From: ARM® Cortex®-M for Beginners

NIST selected Cortex M4 as benchmark MCU;
and the Cortex M7 is a very similar core

Both have ARMv7-M architecture

Cortex M7 has all ISA features available in the Cortex M4

M7 has 6-stage pipeline (vs 3) and better memory features
and branch predicting

M7 has 64-bit FPU, M4 has 32-bit

Falcon requires 53-bit floating-point precision

Using floating-points is rare in cryptography → side channels?

BENCHMARKING
AND PROFILING

02

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking Premise

We bench-
marked both
Dilithium and

Falcon on ARM
Cortex M7.

Both used
open-source

implementations,
i.e., pqm4.

Benchmarks
took averages
over 1000 runs.

All results
henceforth are
clock cycles, for

timings see
paper.

We mainly use
STM32F767ZI
NUCLEO-144

development
board.

Using recent
GNU ARM

embedded
toolchain: GCC

version 10.2.1
20201103

using -O2 -mcpu=cortex-m7 -march=-march=armv7e-m+fpv5+fp.dp

© SB Technology, Inc. SandboxAQ Proprietary Material

Dilithium Benchmarking (M4 vs M7)

Overall, the performance of
Dilithium wasn’t interesting.

Improvements range
between 1.09-1.19x

Essentially accounts for the
slightly better MCU: Cortex M7
vs the Cortex M4.

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking Results (FPU vs EMU on M7)

Falcon sees a drastic
speedup, expectedly

Improvements range
between >6-8x overall

Key generation is least
impacted, >1.5x speedup
overall.

Signing times show most
improvements:
• Sign dynamic >6x speedup,

close to Dilithium
performance.

• Sign tree >4.5x speedup,
comfortably faster than
Dilithium

Verify not impacted, doesn’t require floats.

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking (Dilithium vs Falcon)

Comparing
Dilithium and
Falcon now
shows a
much
different
performance
profile.

Falcon-512
now slightly
faster than
Dilithium2, for
both signing
and
signing+verify
runtimes.

Falcon-1024
also slightly
faster than
Dilithium5
signing and
much faster
when
combining
verify.

© SB Technology, Inc. SandboxAQ Proprietary Material

Profiling Falcon (M4 vs M7)

Performance improvements inside Falcon:

For key generation:
• iFFT/FFT multiplication

16x improved
• Going from 10m to 0.5m

cycles

For both signing modes:
• Fast Fourier sampling >5x

improved.
• Going from 16m to <3m

cycles.

Verify times were unchanged.

Expand private key improved 12x.
Going from 11m to <1m cycles.

CONSTANT OR
ISOCHRONOUS RUNTIME

03

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
Floating-point arithmetic is rare in cryptography!
Thus we thought it was worth looking at…

This example is for double precision multiplication, i.e.,
vmul.f64, this is repeated for each instruction.
We tested 4 STM32 development boards.

We used inline assembly to
• Minimize the unwanted optimizations from the compiler

/ clobbered registers where necessary.
• This minimizes the effect of surrounding instructions on

the operations of interest.
• Which occurred when we tried using C.
• Ensures that all execution is from cache.

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
Assembly code uses two random inputs for each
function.

We found timing issues in all double precision FPU
instructions across all 4 STM32 boards.

In addition (vadd.f64) runtimes had 16 clocks on
avg, standard deviation of 4.1.

If we generated random values in the same range,
such they had the same exponents, the runtimes
were constant and consistent at 10 clock cycles.

Moreover, when we mixed randomness from two
fixed exponent ranges we observed constant and
consistent runtimes of 19 clock cycles.

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
Also tested the ARM Cortex A53 as a
previous paper uses Raspberry Pi 3.

Issue found when casting from types
double to int64_t, op rounds towards zero.

No native instruction to do this on ARMv7.

This can be non-constant time

In LLVM, it isn’t, and leaks the sign.

We reported this to the Falcon team and proposed the
following fix shown on the right.

© SB Technology, Inc. SandboxAQ Proprietary Material

Takeaways

Falcon is super fast on the Cortex M7.

Unknown if timing issues can be exploited.

Users should consider this thoroughly for each use case.

For example
Cloudflare currently recommend using
Falcon in offline situations.

0
1

0
2

0
3

THANK

Paper:
https://eprint.iacr.org/2022/405

GitHub:
https://github.com/jameshoweee/falcon-fpu

YOU

https://eprint.iacr.org/2022/405
https://github.com/jameshoweee/falcon-fpu

© SB Technology, Inc. SandboxAQ Proprietary Material

NIST understands that some applications will not work as they are currently designed if the signature and the data being
signed cannot fit in a single internet packet. For these applications, the implementation complexity of FALCON’s signature
generation may not be a concern, but the difficulty of modifying the applications to work with Dilithium’s larger signature size
may create a barrier to the transition to post-quantum signature schemes. For this reason, NIST decided to standardize
FALCON as well. Given FALCON’s overall better performance when signature generation does not need to be performed on
constrained devices, many applications may prefer to use FALCON over Dilithium, even in cases in which Dilithium’s signature
size would not be a barrier to implementation.

Structure:

1. NIST have always considered Falcon to be much slower than Dilithium signing. The ARM Cortex M4 was decided on the
benchmarking target for embedded software. Last year we wanted to challenge this, since the M4 does not have the
available FPU.

2. Coincidently and conveniently, the M7 is the next core in the Cortex line, is very similar to the M4 (has a few memory
improvements) but has a 64-bit FPU compared to the 32-bit on the M4. So on a board with everything thats need and
with fair benchmarking, which one is faster.

3. Is the statement above by NIST still true…..? No!

4. what parts of the implementations are faster? the fft stuff etc etc and how much faster vs EMU?

© SB Technology, Inc. SandboxAQ Proprietary Material

What’s the big deal?
Constant-time and Correctness

Falcon can heavily
use floating point
operations for:
• Additions and

subtractions,

• Multiplications,
divisions, and
accumulation
versions,

• Other operations like
square root and
conversions.

For determinism,
floats should be

emulated

Native FPUs and
code optimizations

may yield slight
discrepancies

Across different
platforms and

configurations we
would like:

the same message
to yield the same
signature (for the

same secret)

