4th NIST PQC Standardization Conference

Benchmarking and Analysing NIST PQC Lattice-Based
Signature Scheme Standards on ARM Cortex M7

James Howe
Senior Research Scientist

S SANDBOXAQ’

CONTENTS

-~

01 Introduction and Motivation
02 Benchmark and Profile Results

03 cConstant-Timelssues

© SB Technolody, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Ol

INTRODUCTION AND
MOTIVATION

What are the PQC standards we have?

CRYSTALS-Kyber is the only KEM and

CRYSTALS-Dilithium is the signature.

“The security of Kyber has been thoroughly
analyzed [..] based on a strong framework of
results in lattice-based cryptography. Kyber
has excellent performance overall in software,
hardware and many hybrid settings.”

1

“Dilithium is a signature scheme with high
efficiency, relatively simple implementation, a
strong theoretical security basis, and an

encouraging cryptanalytic history.” , ,

© SB Technology, Inc. SandboxAQ Proprietary Material

® o © ®
® o © o,
® o ©)
® o ©

® o ©

® 6 6 o o
e 6 6 o o

—p shortest vector
@ origin

S SANDBOXAQ'

What are the PQC standards we have?

/— We also have two other PQ signatures: —\

iv: |

Falcon, also from More complex Offers significantly po
lattices, different implementation, smaller signature ‘,
performance profile. emulates or uses sizes and de: 3 : -
FPU. fast verification. B o
k / _ . LATTIGES[EVERYWHERE

1

Falcon was chosen for standardization because NIST has confidence in
its security (under the assumption that it is correctly implemented) and
because its small bandwidth may be necessary in certain applications.

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

The Premise

: L

“NIST understands that some applications
will not work as they are currently designed ‘

. . . o 0 signin
if the signature and the data being signed
cannot fit in a single internet packet.”

“For this reason, NIST decided to standardize

00® FALCON as well. Given FALCON's overall

DQ_ better performance when signature
generation does not need to be performed
on constrained devices, many applications
may prefer to use FALCON over Dilithium,
even in cases in which Dilithium'’s signature
Size WOL’”d not be a bOrrier to Figure 7. Signature Benchmarks on ARM Cortex-M4 processor
implementation.”

- J

@
(5]
o
=
o
=~
Q
=}
=
o

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Current State on ARM Cortex M4

Without double precision,
P)

Falcon emulates floats.
Thus we get performance profiles like this on
Cortex M4.

But can we get this closer using similar device with
full FPU?

We wanted to challenge this belief that Falcon
signing is much slower than Dilithium.

@
(5]
o
=
o
=~
Q
=}
=
o

Important decision in, e.g, RISC-V CPU and SoC
implementations.

Figure 7. Signature Benchmarks on ARM Cortex-M4 processor

Also, does FPU open questions on constant time?

N /

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

What's the big deal?

Constant-time and Correctness

4 I

Nrne'® sy
@ ©_I =p
Emulated floating-point Only using integer operations
implementation can be done with uint32_t and uint64_t types
This is constant-time, provided that the underlying platform offers constant-time
opcodes for:
* Multiplication of two 32-bit unsigned integers into a 64-bit result.
* Left-shift or right-shift of a 32-bit unsigned integer by a potentially secret shift
count in the 0..31 range.
\ 2 v,

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Why the ARM Cortex M7?

NIST selected Cortex M4 as benchmark MCU;
and the Cortex M7 is a very similar core

Both have ARMv7-M architecture

Cortex M7 has all ISA features available in the Cortex M4

and branch predicting s

SHLAR LA
SwLSR s,
SHULR wmov.

SMUADX VRS,
swLsT SR

R swLrr WL

Advanced data processingemmsmms s vies
bit field manipulations SE—S sHsox LA
—_— —— D SSAX miLS
ssugs oL
SxTAB16 wop
ao016 veusi
uasx VsgRT

M7 has 64-bit FPU, M4 has 32-bit

uHsues vsTH
ADC ADD AR AND AR B UQADD16 VSTR

Falcon requires 53-Dbit floating-point precision

BIC BKPT L BLX BX ugasK vsus.
on o cps ome. R UgsUB16
ose 158 LOMIA LOR usaos.

2 usaTie
General data processing usuBls

1/O control tasks xTAB.
PR — vane1s uxTan

STMIA STR STRE STRH SUB SVC uxTB16

I IC C DC IC Cortex-M4 Cortex-M4 Cortex-M7
WFEL CWI) VIED Cortex-MO+ Cortex-M3 e = el

Using floating-points is rare in cryptography — side channels?

< M7 has 6-stage pipeline (vs 3) and better memory features

)
S e
)

)

© SB Technology, Inc. SandboxAQ Proprietary Material From: ARM® Cortex®-M for Beginners

02

BENCHMARKING
AND PROFILING

Benchmarking Premise

We bench- Both used Benchmarks All results We mainly use Using recent
marked both open-source took averages henceforth are STM32F7671I GNU ARM
Dilithium and implementations, over 1000 runs. clock cycles, for NUCLEO-144 embedded

Falcon on ARM i.e, pgm4. timings see development toolchain: GCC

Cortex M7/. paper. board. version 10.21]

20201103

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Dilithium Benchmarking (M4 vs M7)

Table 1: Benchmarking results of Dilithium on the ARM Cortex M7 using the
STM32F767Z1 NUCLEO-144 development board. Results in KCycles.

Over(]”, the perfOI’mCIﬂce of Parameter Set Opera- Min Avg Max SDev/ Avg
Dilithium wasn't interesting. tion SErr (ms)
Dilithium-2 Key Gen 1,390 1,437 1,479 81/3 6.7
M7 vs M4 Key Gen 1.13x 1.10x 1.06x -/- 1.40x
Dilithium-2 Sign 1,835 3,658 16,440 604/17 16.9
M7 vs M4 Sign 1.19x 1.09x 0.64x -/- 1.40x
Dilithium-2 Verify 1,428 1,429 1,432 27.8/0.9 6.6
Improvemggts rgcmge M7 vs M4 Verify lL12x 1.12x 1.12x -/~ 1.42x
between 1. 119x Dilithium-3 Key Gen 2,563 2,566 2,569 37.6/1.2 11.9
M7 vs M4 Key Gen 1.12x 1.13x 1.12x -/- 1.44x
Dilithium-3 Sign 2,981 6,009 26,208 65/9 20.7
M7 vs M4 Sign 112x 1.19x 0.78x -/~ 2.06x
Essentially accounts for the Dilithium-3 Verify 2,452 2.453 2,456 26.5/0.8 11.4
; . M7 vs M4 Verif 1.12 1.12 1.11 -/~ 1.43
slightly better MCU: Cortex M7 = = = = = / =
Dilithium-5 KeyGen 4,312 4,368 4,436 54.4/1.7 20.2
vs the Cortex M4. Dilithium-5 Sign 5,020 8,157 35653 99k/3k 37.8
Dilithium-5 Verify 4,282 4,287 4,292 46.5/1.5 19.8

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Benchmarking Results (FPU vs EMU on M7)

A il T
®§>§> O STMI2ET672 NUCLEC-141 development bossd. Renlts in KCyeles,
Falcon sees a drastic Signing times show most SESSSESE TR S S
speedup, expectedly improvements: Bl GO PN ey ilen
fl + Sign dynamic >6x speedup,
@,j close to Dilithium
Improvements range performance. /4
between >6-8x overall - Sign tree >4.5x speedup, 188/6
comfortably faster than
Ci@ Dilithium
Key generation is least
impacted, >1.5x speedup
overall.
o o 5 p : : 3,080
Verify not impacted, doesn’t require floats. : J_Exp SK 26,101 26120

8.49x

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Benchmarking (Dilithium vs Falcon)

(©}

Comparing
Dilithium and
Falcon now
shows a
much
different
performance
profile.

N

4 N I

%
%
%

Falcon-512
now slightly
faster than
Dilithium?2, for
both signing
and
signing+verify
runtimes.

© SB Technology, Inc.

N A\ /

?

Falcon-1024
also slightly
faster than
Dilithium5
signing and
much faster
when
combining
verify.

SandboxAQ Proprietary Material

0
9]
2
B
S
)
~4
O]
2

S SANDBOXAQ'

Profiling Falcon (M4 vs M7)

Performance improvements inside Falcon:

For key generation: For both sighing modes:
« iFFT/FFT multiplication « Fast Fourier sampling >5x
16x improved improved. £
« Going from 10m to 0.5m « Going from 16m to <3m E
cycles cycles. o

Expand private key improved 12x.
Going from 1Im to <Im cycles.

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

03

CONSTANT OR
ISOCHRONOUS RUNTIME

Constant-Time Validation

Floating-point arithmetic is rare in cryptography! R —
Thus we thought it was worth looking at.. . "vldr d5, %2\n"

‘ "yldr d6, %3\n"
1 "dmb\n"
. . \ = "iSb\Il"
We used inline assembly to ¢ "ldr ri, %i\n"
« Minimize the unwanted optimizations from the compiler i e R

. "ymul.f64 d4, d5, d6\n"
| clobbered registers where necessary. wymul.f64 d4. d5. d6\n"

« This minimizes the effect of surrounding instructions on "mui - i:i ji’ Z:’ janzz
the operations of interest. e el i

"ymul .f64 d4, d5, d6\n"

« Which occurred when we tried using C. : "voul .£64 d4, d5, d6\n"
1 "ymul.f64 d4, 45, d6\n"
» Ensures that all execution is from cache. 5 "vymul.f64 d4, d5, d6\n"
\\k 4// » "ymul .f64 d4, d5, d6\n"
- DaleER e YAalial
. S subs V.0, x2, ri\n"
This example is for double precision muiltiplication, i.e, . w=rv(cycles) : "m"(DWT->CYCCNT),

vmul.f64, this is repeated for each instruction. 0 "m"(r1), "m" <r2>) otrit, trat,
21 " d4 n s ||d5 n s lld6ll ;
We tested 4 STM32 development boards.

© SB Technology, Inc. SandboxAQ Proprietary Material S;SANDBOXAQ"

Constant-Time Validation

Assembly code uses two random inputs for each . asm volatile (
. 2 Uy lidr Nd 5. O\ n !
funCUOn. "Vldr d6, %3\11"
We found timing issues in all double precision FPU I et
instructions across all 4 STM32 boards. s "ldr ri, %1\n"
7 "ymul .f64 d4, d5, d6\n"
In addition (vadd.f64) runtimes had 16 clocks on W E
avg, standard deviation of 4.1. "vmul.£64 d4, d5, d6\n"
. "ymul .f64 d4, d5, d6\n"
If we generated random values in the same range, . "ymul.£64 d4, d5, d6\n"
such they had the same exponents, the runtimes | e jgtn:
° 1 vmul . y 4 n
were constant and consistent at 10 clock cycles. i wymul.£64 d4. d5. d6\n"
. ¢ "ymul.f64 d4, d5, d6\n"
Moreover, when we mixed randomness from two : "ldr r2, %i\n"
fixed exponent ranges we observed constant and - 'jsgﬁsl|°é°°’ ;2’)#\3" NS CTGCHT)
consistent runtimes of 19 clock cycles. Tl e e

lld4ll’ ||d5||, "d6");

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Constant-Time Validation

Also tested the ARM Cortex A53 as a
/ previous paper uses Raspberry Pi 3. ﬂ TR

double d;
uint64_t u;
Issue found when casting from types d .
double to int64_t, op rounds towards zero. - uint64_t mask;
8 uint32_t high, low;

No native instruction to do this on ARMV7.
mask = x.i >> 63;
x.u &= Ox7fffffffffff£fff£fL;

This can be non-constant time

// a / 0x1p32f;
; high = x.d / 4294967296.f;
In LLVM, it isn't, and leaks the sign. .

low = x.d - (double)high * 4294967296.f;
x.u = ((int64_t)high << 32) | low;

We reported this to the Falcon team and proposed the
following fix shown on the right.

return (x.u & ((uint64_t)-1 - mask))
| ((-x.u) & mask);

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

Takeaways

double d;

uint64_t u;

int64_t i;
} ox;

uint64_t mask;

8 Unknown if timing issues can e exploited. © uint32.t high, low;

x.d = a;

[) int64_t cast(double a)
“ Falcon is super fast on the Cortex M7. union {

mask = x.i >> 63;
x.u &= OxTLfffffffffffffffL;

// a / 0x1p32f;
high = x.d / 4294967296.f;

U
@ Users should consider this thoroughly for each use case.

// high * 0x1p32f;
low = x.d - (double)high * 4294967296.f;
X.u ((int64_t)high << 32) | low;

For example .
Cloudflare currently recommend using ~ T
Falcon in offline situations. ‘

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

& SANDBOXAQ'

Paper:
= httpsz[Zegrint.iocr.org[20221405

GitHub:
https://qithub.com/jameshoweee/falcon-fpu

https://eprint.iacr.org/2022/405
https://github.com/jameshoweee/falcon-fpu

NIST understands that some applications will not work as they are currently designed if the signature and the data being
signed cannot fit in a single internet packet. For these applications, the implementation complexity of FALCON's signature
generation may not be a concern, but the difficulty of modifying the applications to work with Dilithium's larger signature size
may create a barrier to the transition to post-quantum signature schemes. For this reason, NIST decided to standardize
FALCON as well. Given FALCON's overall better performance when signature generation does not need to be performed on
constrained devices, many applications may prefer to use FALCON over Dilithium, even in cases in which Dilithium'’s signature
size would not be a barrier to implementation.

Structure:

1. NIST have always considered Falcon to be much slower than Dilithium signing. The ARM Cortex M4 was decided on the
benchmarking target for embedded software. Last year we wanted to challenge this, since the M4 does not have the
available FPU.

2. Coincidently and conveniently, the M7 is the next core in the Cortex line, is very similar to the M4 (has a few memory
improvements) but has a 64-bit FPU compared to the 32-bit on the M4. So on a board with everything thats need and
with fair benchmarking, which one is faster.

3. Isthe statement above by NIST still true....? No!

4. what parts of the implementations are faster? the fft stuff etc etc and how much faster vs EMU?

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ

What's the big deal?

Constant-time and Correctness

&

For determinism,
floats should be
emulated

Falcon can heavily
use floating point
operations for:

« Additions and
subtractions,

Native FPUs and Across different
code optimizations platforms and
may yield slight configurations we
discrepancies would like:

the same message
to yield the same
signature (for the
same secret)

Multiplications,
divisions, and
accumulation
versions,

Other operations like
square root and
conversions.

© SB Technology, Inc. SandboxAQ Proprietary Material S SANDBOXAQ"

