

















What happens when quantum computers become a reality 10/15 years from now?

Commonly used public-key cryptographic algorithms

(based on integer factorisation and discrete log problem) such as:

RSA, DSA, Diffie-Hellman Key Exchange, ECC, ECDSA

will be vulnerable to Shor’s algorithm and will no longer be secure.

What happens when quantum computers become a reality 10/15 years from now?

Commonly used public-key cryptographic algorithms

(based on integer factorisation and discrete log problem) such as:

RSA, DSA, Diffie-Hellman Key Exchange, ECC, ECDSA

will be vulnerable to Shor’s algorithm and will no longer be secure.

IBM’s quantum cloud computer

goes commercial -March 2017

What happens when quantum computers become a reality 10/15 years from now?

Commonly used public-key cryptographic algorithms

(based on integer factorisation and discrete log problem) such as:

RSA, DSA, Diffie-Hellman Key Exchange, ECC, ECDSA

will be vulnerable to Shor’s algorithm and will no longer be secure.

Scientists are close to building a quantum

computer that can beat a conventional one
–December 2016

IBM’s quantum cloud computer

goes commercial -March 2017

What happens when quantum computers become a reality 10/15 years from now?

Commonly used public-key cryptographic algorithms

(based on integer factorisation and discrete log problem) such as:

RSA, DSA, Diffie-Hellman Key Exchange, ECC, ECDSA

will be vulnerable to Shor’s algorithm and will no longer be secure.

Google moves closer to a universal

quantum computer -June 2016

Scientists are close to building a quantum

computer that can beat a conventional one
–December 2016

IBM’s quantum cloud computer

goes commercial -March 2017

 Why do we need post-quantum cryptography?

 Quantum computers break ECC and RSA.

 Classically hard computational problems are now trivial.

 Governments and companies in preparation.

 Quantum computers exploit the power of quantum parallelism:

 Shor’s Algorithm (1994)

 Used to quickly factorise large numbers (exponential speedup).

 Significant implications for current cryptographic techniques.

 Grover’s Algorithm(1996)

 Can be used to search an unsorted database faster than a conventional computer,

effects security of AES, so AES-128 now 64-bit secure.









Revealed: Google’s plan for

quantum computer supremacy

-August 2016





Revealed: Google’s plan for

quantum computer supremacy

-August 2016

The quantum clock is ticking on

encryption – and your data is under

threat -October 2016





Revealed: Google’s plan for

quantum computer supremacy

-August 2016

The quantum clock is ticking on

encryption – and your data is under

threat -October 2016

Hacking, cryptography, and the countdown

to quantum computing –September 2016





Revealed: Google’s plan for

quantum computer supremacy

-August 2016

The quantum clock is ticking on

encryption – and your data is under

threat -October 2016

Google tests new crypto in Chrome

to fend off quantum attacks
–July 2016

Hacking, cryptography, and the countdown

to quantum computing –September 2016

 ETSI researching industrial requirements for quantum-safe real-world deployments.
 ETSI Quantum-Safe Cryptography (QSC) Industry Specification Group (ISG).

 NIST plan to start post-quantum standardisation 30 Nov 2017
 Similar to previous AES and SHA-3 standardisations.

 Why focus on lattice-based cryptography?
 More versatile than code-based, MQ,

and hash-based schemes.

 Theoretical foundations are well-studied.

 Uses in encryption, signatures, FHE, IBE, etc…

 Lattice-based cryptography is important in its own right.

 Research in lattice-based cryptography is flourishing:
 “New Hope” key exchange created.

 “LPR” encryption outperforms RSA and ECC in s/w and h/w.

 “BLISS” signatures outperform RSA and ECDSA in s/w and h/w.

 Lattice-based cryptography is already being considered:
 VPN strongSwan supports signature and encryption within post-quantum mode.

 New Hope awarded Internet Defense Prize Winner 2016.

 Google experimenting with “New Hope” key exchange.

 Horizon 2020 SAFECrypto Project.
 Advancing lattice-based cryptography in theory and practice.

 Digital signatures are very important.
 Authenticates message source.

 Validates that data sent is unaltered/trusted.

 Identifies person, legally, like written signature.

 Used everyday within bank transfers, smart cards, SSL etc…
 Currently uses RSA or ECDSA.

 These will be obsolete with quantum computers.

 Hardware-based signatures are becoming more prominent.
 Will become prominent within IoT & the cloud.

 Required for V2X communications.

 For lattice-based digital signatures, current state-of-the-art is BLISS.

 Recently announced was Ring-TESLA, an efficient lattice-based signature scheme.

 Shown to compete with state-of-the-art in software.

vsBLISS Ring-TESLA

Patented NTRU assumptions. Strong security assumptions (Ring-LWE).

No worst-case to average-case hardness. Includes worst-case to average-case hardness.

Costly discrete Gaussian sampling. No on-device discrete Gaussian sampling.

Large polynomial multiplier used. Evaluate generic low-area poly. multiplier.

Parameters not chosen via security reduction. Simpler parameter selection, tightly secure.

vs.

 Attacks found in the BLISS algorithm.

 Cache attack (software) targets the discrete Gaussian sampler component.

 Discrete Gaussian samplers are known to be a side-channel target in software and

hardware.

 Not known yet how to fix this issue in software.

 Ring-TESLA uses discrete Gaussian samplers independent of secret computations.

 Generic hardware architecture.

 Evaluate low-area hardware design.

 Offers better security, slower throughput.

 Spartan-6 FPGA targeted for comparisons.

¹

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

¹

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

¹

Verify(𝝁; 𝒛, 𝒄; 𝒂1, 𝒂2, 𝒕1, 𝒕2):

Compute hash inputs:
 𝒘1

′ ≡ 𝒂1𝒛 + 𝒕1𝒄 mod 𝑞
 𝒘2

′ ≡ 𝒂2𝒛 + 𝒕2𝒄 mod 𝑞

Compute the hash function:
 𝒄′ = 𝐻(𝒘1

′ ||𝒘2
′ , 𝜇)

Accept/reject signature:
 𝒄 = 𝒄′

1) Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson. An efficient lattice-based signature scheme with provably secure instantiation. In AFRICACRYPT, pages 44–60, 2016.

Sign(𝝁; 𝒂1, 𝒂2, 𝒔, 𝒆1, 𝒆2):

Uniform polynomial: 𝒚 ← ℤ𝑞 𝒙 /(𝒙𝑛 + 1)

 𝒗1 ≡ 𝒂1𝒚 mod 𝑞, 𝒗2 ≡ 𝒂2𝒚 mod 𝑞

Compute the hash function:

 𝒄 = 𝐻(𝒗1||𝒗2, 𝜇)

Compute signature/rejections:

 𝒛 ≡ 𝒚 + 𝒔𝒄 ←signature
 𝒘1 ≡ 𝒗1 + 𝒆1𝒄 mod 𝑞
 𝒘2 ≡ 𝒗𝟐 + 𝒆2𝒄 mod 𝑞

KeyGen(𝒂𝟏, 𝒂𝟐):

Discrete Gaussian polynomials: 𝐬, 𝒆1, 𝒆2 ← 𝐷𝜎
𝑛, 𝐭1 ≡ 𝒂1𝒔 + 𝒆1 mod 𝑞, 𝐭2 ≡ 𝒂2 + 𝒆2 mod 𝑞

Secret-Key: (𝒔, 𝒆1, 𝒆2) // Public-Key: (𝒕1, 𝒕2).

128-bit security

parameters:

𝑛 = 512,
𝑞 = 51750913,

𝜎 = 52.

Signature is 11.9 kb,

public-key is 26 kb,

and secret-key is 13.7 kb.

High-level architecture of the Ring-LWE signature scheme, Ring-TESLA.

 The first hardware design
of a Ring-LWE signature
scheme.

 First low-area signature
scheme in lattice-based
cryptography.

 Generic hardware
designs for sign and verify.

 Numerous parallel
multipliers used for a
variety of results.

Pre-Hash

Pre-Hash Hash

Pre-Hash Hash Post-Hash

 Pipeline created for pre-hash computations.

 After pre-hash polynomial multiplication;

 𝒚 is copied to another register for 𝒛.

 𝒚 is generated for next signature in parallel.

 Hash, LHW calculations of 𝒛, 𝒘𝟏, and 𝒘𝟐, and rejections

then outside the critical path.

 Sign/Verify critical path thus pre-hash phase.

 Pipeline created for pre-hash computations.

 After pre-hash polynomial multiplication;

 𝒚 is copied to another register for 𝒛.

 𝒚 is generated for next signature in parallel.

 Hash, LHW calculations of 𝒛, 𝒘𝟏, and 𝒘𝟐, and rejections

then outside the critical path.

 Sign/Verify critical path thus pre-hash phase.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 Ring-TESLA, ideal lattice-based signatures on a Spartan 6 – LX25 FPGA.

 Significantly smaller than other lattice-based signature designs, suffers in throughput.

 Significantly smaller and faster in comparison to RSA and ECDSA.

 The first hardware design of a Ring-LWE signature scheme.

 First low-area signature scheme in lattice-based cryptography.

 Generic hardware designs for sign and verify, important for parameters changes.

 Numerous parallel multipliers used for a variety of results.

 Consider hardware-friendly parameters in the future.

 Consider high-throughput, large polynomial multiplier in the future.

