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 Why do we need post-quantum cryptography?

 Quantum computers break ECC and RSA.

 Classically hard computational problems are now trivial.

 Governments and companies in preparation.

 Quantum computers exploit the power of quantum parallelism:

 Shor’s Algorithm (1994)

 Used to quickly factorise large numbers (exponential speedup).

 Significant implications for current cryptographic techniques.

 Grover’s Algorithm(1996)

 Can be used to search an unsorted database faster than a conventional computer, 

effects security of AES, so AES-128 now 64-bit secure.
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–July 2016

Hacking, cryptography, and the countdown 

to quantum computing –September 2016



 ETSI researching industrial requirements for quantum-safe real-world deployments.
 ETSI Quantum-Safe Cryptography (QSC) Industry Specification Group (ISG).

 NIST plan to start post-quantum standardisation 30 Nov 2017
 Similar to previous AES and SHA-3 standardisations.

 Why focus on lattice-based cryptography?
 More versatile than code-based, MQ,                                                                                        

and hash-based schemes.

 Theoretical foundations are well-studied.

 Uses in encryption, signatures, FHE, IBE, etc…



 Lattice-based cryptography is important in its own right.

 Research in lattice-based cryptography is flourishing:
 “New Hope” key exchange created.

 “LPR” encryption outperforms RSA and ECC in s/w and h/w.

 “BLISS” signatures outperform RSA and ECDSA in s/w and h/w.

 Lattice-based cryptography is already being considered:
 VPN strongSwan supports signature and encryption within post-quantum mode.

 New Hope awarded Internet Defense Prize Winner 2016.

 Google experimenting with “New Hope” key exchange.

 Horizon 2020 SAFECrypto Project.
 Advancing lattice-based cryptography in theory and practice.



 Digital signatures are very important.
 Authenticates message source.

 Validates that data sent is unaltered/trusted.

 Identifies person, legally, like written signature.

 Used everyday within bank transfers, smart cards, SSL etc…
 Currently uses RSA or ECDSA.

 These will be obsolete with quantum computers.

 Hardware-based signatures are becoming more prominent.
 Will become prominent within IoT & the cloud.

 Required for V2X communications.



 For lattice-based digital signatures, current state-of-the-art is BLISS.

 Recently announced was Ring-TESLA, an efficient lattice-based signature scheme.

 Shown to compete with state-of-the-art in software.

vsBLISS Ring-TESLA

Patented NTRU assumptions. Strong security assumptions (Ring-LWE).

No worst-case to average-case hardness. Includes worst-case to average-case hardness.

Costly discrete Gaussian sampling. No on-device discrete Gaussian sampling.

Large polynomial multiplier used. Evaluate generic low-area poly. multiplier.

Parameters not chosen via security reduction. Simpler parameter selection, tightly secure.

vs.



 Attacks found in the BLISS algorithm.

 Cache attack (software) targets the discrete Gaussian sampler component.

 Discrete Gaussian samplers are known to be a side-channel target in software and 

hardware.

 Not known yet how to fix this issue in software.

 Ring-TESLA uses discrete Gaussian samplers independent of secret computations.



 Generic hardware architecture.

 Evaluate low-area hardware design.

 Offers better security, slower throughput. 

 Spartan-6 FPGA targeted for comparisons.
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128-bit security 

parameters:

𝑛 = 512,
𝑞 = 51750913,

𝜎 = 52.

Signature is 11.9 kb,

public-key is 26 kb,  

and secret-key is 13.7 kb.



High-level architecture of the Ring-LWE signature scheme, Ring-TESLA.

 The first hardware design 
of a Ring-LWE signature 
scheme.

 First low-area signature 
scheme in lattice-based 
cryptography.

 Generic hardware 
designs for sign and verify.

 Numerous parallel 
multipliers used for a 
variety of results. 
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 Pipeline created for pre-hash computations.

 After pre-hash polynomial multiplication; 

 𝒚 is copied to another register for 𝒛.

 𝒚 is generated for next signature in parallel.
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then outside the critical path.

 Sign/Verify critical path thus pre-hash phase.
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 Significantly smaller and faster in comparison to RSA and ECDSA. 



 The first hardware design of a Ring-LWE signature scheme.

 First low-area signature scheme in lattice-based cryptography.

 Generic hardware designs for sign and verify, important for parameters changes.

 Numerous parallel multipliers used for a variety of results. 

 Consider hardware-friendly parameters in the future.

 Consider high-throughput, large polynomial multiplier in the future.




