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KeyGen()

/0 Generate matrices A, B with coefficients in

~/

7

such that { BA =0
B has small coefficients
® pk< A
k sk — B
Sign(m,sk)

® Compute c such that cA = H(m)

® v < avectorin A(B) close to c

® S<C—YV

Verify(m,pk,s)
Accept iff:
{ s is short

SA = H(m)

3
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Advantages

M Compact
M Fast

4 GPV framework proved secure in the ROM and QROM (Boneh et al. ASIACRYPT 2011)
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Limitations

[J Non Trivial to understand and implement
[0 Floating point arithmetic
e [J Side channel resistance not very studied

Side channel attacks targeting Gaussians Implementation issues

_ Portability issues:
> Espitau et al. SAC’2016 - Floating point arithmetics
> Fouque et al EUROCRYPT’2020 - Many subtleties for implementing

the Gaussian sampler
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Need for timing protection
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« Constant time »

The execution time does not depend on the private key.

\-' Not necessarily constant !

Better say isochronous ?

Assumption
( +,—, X,/ Constant time on integers )




4 Integer arithmetic for the Gaussian sampling for Falcon
M Theoretically studied isochrony

4 Test suite : Statistically Acceptable Gaussians (SAGA)
4 Implementations
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Sign(m,sk)
® Compute c such that cA = H(m) W

® v < avectorin A(B) close to ¢ / » ffsampling—» Gaussian Sampling

® S—C—V over Z

Except Gaussian sampling, other operations do not use conditional branching
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» Micciancio and Walter CRYPTO’17

» Karmakar et al. DAC IEEE’19

Here we present a simple

alternative dedicated to Falcon

Idea

Construct a distribution that looks somewhat like a Gaussian but is not
statistically close, and use rejection sampling to correct the discrepancy.




The sampling distribution
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The technique

G Draw an element Z; from a centered half Gaussian of standard deviation Oy,




The technique

a Draw b uniformly at random in {0,1} and compute z < 2b—1) - z5+ b
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The technique

D, ,(2)
e Rejection Sampling (Lyubashevsky EC 2012) Accept with probability P o,

X
accept
P GZ,GO(Z)




Algorithm SampleZ(o, ()
/Require: u € [0,1),6 <oy \

Ensure: z ~ D5, ,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. 7 « (2[7— 1)'Z()+b

2 2

$ = <
4.x<——( #) +—0
20?2 203

5. Accept with probability exp(x)

\ Restart to 1. otherwise /

12
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Algorithm SampleZ(o, ()
/Require: u € [0,1),6 <oy \

Ensure: 2z ~ D .,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. { €< (2[7— 1)Z0+b

2 2

$ = <
4.x<——( #) +—O
20?2 203

5. Accept with probability exp(x)
\ Restart to 1. otherwise

P accept

Y
wo(3)



/Algorithm SampleZ(o, 1) \

Require: u € [0,1),0 < o

Ensure: z ~ D5, ,

1. 7, < Basesampler()
2. b « {0,1} uniformly
3. 7 « (2[9— 1)’Z()+b

2 2

<= <
4.x<——( #) +—O
202 203

5. Accept with probability exp(x)
Restart to 1. otherwise

\_ /
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/Algorithm SampleZ(o, 1) \

Require: u € [0,1),0 < o

Ensure: 7 ~ DZ,W
Isochrony details
1, z, < Basesampler()

uniformly

3. Z<—(2b—1) Z()+b

1) Basesampler with a table

2 2
4. ¥ «— — (z=p 4+ 2) Polynomial approximation for exp
202 203 3) Make the number of iterations
5. Accept with probabilit (éXDp(x) independent from the secret
\ Restart to 1. otherwise ™ /
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/ Security analysis
a Our sampler is isochronous with respect to the standard deviation o, the center ;4 and the sampled value z\

a Using our sampler on a A-bit secure signature scheme provides 4 — 2 bits of security.

\_ /

See our paper for the proof

|4
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Security analysis

Our sampler is isochronous with respect to the standard deviation o, the center ;4 and the sampled value

a Using our sampler on a A-bit secure signature scheme provides 4 — 2 bits of security.

)
/

Rényi divergence

tool

See our paper for the proof

/ Take two cryptographic schemes \

- One with distribution &
- One with an approximate distribution @ with the same support

Suppose that :

<27k

Q
1. & and @ are close enough : || 1 — >

(0 0)
2. the number of sample queries is bounded

\Then, the bit security will remain almost the same. j

» T. Prest
ASIACRYPT’17
» S. Bai, A. Langlois, T. Lepoint, D. Stehle, and R. Steinfeld.
ASIACRYPT’15
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Take two cryptographic schemes The multiplicativity result can only be applied
- One with distribution & if the distributions &, are independent.

- One with an approximate distribution @ with the

same support
PP OK for Fiat-Shamir with aborts signatures.

Suppose that : Not ok for Falcon where ¢ and u are dependent.
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[d Basesampler with a table
(] Polynomial approximation for exp

[J Make the number of iterations independent from the secret



BaseSampler() close to Dy. 5

Cumulative Distribution Table (CDT) with w elements of @ bits

CDT sampling can be done in constant time if the algorithm reads the
entire table each time and carry out each comparison

|7
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BaseSampler() close to Dy. 5

We provide a script that generates w and the CDT table

for a given target precision ¢ = 27 and 9

Algorithm Renyification(o, €, 0)
/ Require: o0,¢ < 0,0 \
Ensure: w, the CDT table

1. w « Smallest tailcut such that R, <D[W],GO, DZ+,00> <l+e

2. Compute the table values with a « clever » rounding
1.Forz 2 1,CDT(@) < 27|20 Dy, 0|

2. CDT(0) « 1 — Z CDT(2)

z>1

\ 3. Recompute Rényi divergence and return the new precision, w and CDT /

|7



R.. (BaseSampler(), D, ) < 1+27

For 6, = 1.82035, our script gave

elements

CDT(0) = 27 7% x 1697680241746640300030
CDT(1) = 277? x 1459943456642912959616
CDT(2) = 27"? x 928488355018011056515
CDT(3) = 277 x 436693944817054414619
CDT(4) = 277? x 151893140790369201013
CDT(5) = 277 x 39071441848292237840
CDT(6) = 27 "% x 7432604049020375675
CDT(7) = 27 7% x 1045641569992574730
CDT(8) = 277% x 108788995549429682

18

CDT(9) = 2772 x 8370422445201343
CDT(10) = 277? x 476288472308334
CDT(11) = 277% x 20042553305308
CDT(12) = 27 "% x 623729532807
CDT(13) = 277? x 4354889437
CDT(14) = 2772 x 244322621
CDT(15) = 277? x 3075302

CDT(16) = 277 x 28626

CDT(17) = 277 x 197

CDT(18) =27 x 1



The isochronous sampler

M Basesampler with a table
[J Polynomial approximation for exp

[J Make the number of iterations independent from the secret
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Polynomial approximation tools

@ Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234
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The isochronous sampler

M Basesampler with a table
M Polynomial approximation for exp

] Make the number of iterations independent from the secret
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® » Could the number of iterations leak the secret?
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® » Could the number of iterations leak the secret?

2 po(Z7)
Po(Z)

The number of iterations follows a geometric distribution of average
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2 po(Z7)
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o

The average number of iterations is
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® » Could the number of iterations leak the secret?

2 po(Z7)
Omin po.,ﬂ(Z)

o

The average number of iterations is

Tweak for Falcon’s sampler

O O

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),

p(w(Z) ~ 0\/%

2 pa(ZF) 2epn(ZH) 2 p(ZH)

oD TEo\2E Gn/28

So,
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® » Could the number of iterations leak the secret?

2- po'O(Z+)
Omin pa,ﬂ(Z)

o

The average number of iterations is

Tweak for Falcon’s sampler

0]

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),
p. (7))~ o\ 2r
i // Independent from ,u\

7. pao(z+) 7. pao(z+) 7. pao(Z+) v  Independent from o
N = v Independent from Z
P, (Z) o\ 2x CpminV 27 \_ /

o

So,

Onmin

o
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Zhao, Steinfeld and Sakzad (2018/1234)
Karmakar et al (2019/267)
® » Could the number of iterations leak the secret?

2- po'O(Z+)
Omin po.,'u(Z)

o

The average number of iterations is

Tweak for Falcon’s sampler

0]

The acceptance probability P, is scaled by a factor < M 0.73
c o

max

Indeed, with a Poisson summation (under a Rényi divergence argument),
p. (7))~ o\ 2r
i /s/ Independent from ,u\

7. pao(z+) 7. PGO(Z+) 7. pao(Z+) v  Independent from o
N = v Independent from Z
P, (Z) o\ 2x CpminV 27 \_ /

o

So,

Onmin

o

The whole algorithm
Is constant time
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Our second contribution is SAGA, a statistical test suite.
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Our second contribution is SAGA, a statistical test suite.
We propose this because:

4 Implementation failures are possible, e.g. inaccuracy or
incorrectness in CDT table values.

4 Implementation failures can also be found if the base
Gaussian sampler is validated, but the outputs are not.

4 Randomness / entropy levels not being sufficient.

M SAGA only works on outputs, thus it is completely
agnostic to the sampling method or scheme used.



Our second contribution is SAGA, a statistical test suite.
More specifically SAGA can validate:

4 Univariate Gaussian samples for base Gaussian samplers
useful for samplers in FrodoKEM, DLP-IBE, FHE, etc.

4 Multivariate Gaussian samples for outputs of schemes
useful for Falcon, DLP-IBE, LATTE, etc.

4 Supplementary, graphical, and sanity check tests for
things like rejection rates, uni-, and multi-variate normality.



4 First we compare the Expected vs Empirical observations
for mean, variance, skewness, and kurtosis.

M Secondly we perform a chi-squared normality test.

Testing a Gaussian sampler with center = -0.920619 and sigma
Number of samples: 100

Moments | Expected Empiric

_________ oo e e e e e e e e

Mean: | -0.92062 -0.92000

St. dev. | 1.71186 1.51446

Skewness | 0.00000 -0.25650

Kurtosis | 0.00000 -0.26704

Chi-2 statistic: 4.033416341364921

Chi-2 p-value: 0.4015023295495953 (should be > 0.001)

How many outliers? O

Is the sample valid? True
.

1.711864

An example output for testing univariate samples from a (base) Gaussian sampler.
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4 First we compare the Expected vs Empirical observations
for mean, variance, skewness, and kurtosis.

M Secondly we perform a chi-squared normality test.

Q-Q plot for Univariate Normality of Gaussian Samples

Gaussian Samples, Observed vs Expected R-Squared = 0.99994818512025562818

—— Gauss Expected
25000 A HEEl Gauss Samples

20000 A

15000 A

pdf(x)
Sample Quantiles
o

10000 A

5000 A

-4 -3 -2 -1 0 1 2 3 4
Theoretical Quantiles

(a) Observed vs Expected Gaussian PDF (b) QQ-plot of Observed vs Expected Quantiles

A visual representation of checking normality for the univariate Gaussian samples.
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1. Can we find errors if the base sampler is designed well?
4 Incorrect tree designs in Falcon will affect its covariance.
4 We thus posit that covariance in (block-)sub-diagonals:
4 grow in O(yn) for correct implementations and
4 grow in O(n) for incorrect implementations.
4 Test 3 uses this (p-value) in a chi-squared test.

1 - Covariance matrix (128 x 128):

[[ 0.997 -0.0021 0.0065 ... 0.0014 O
[-0.0021 1.0001 -0.0014 ... 0.0032 0
[ 0.0065 -0.0014 1.0028 ... -0.0006 0
[ 0.0014 0.0032 -0.0006 ... 1.0063 -0
[ 0.0012 0.0005 0.0074 ... -0.0022 0
[-0.0039 -0.0048 0.0065 ... -0.0005 -0

2 - P-value of Doornik-Hansen test:

3 - P-value of covariance diagonals test:

4 - Gaussian coordinates (w/ st. dev. =

Example output for a correct implementation of Falcon.

.0012 -0.
.0005 -0.
.0074 O.
.0022 -0.
.993 -0.
.0008 1.
sigma)?

0039]
00438]
0065]
0005]
0008]
0081]]
0.2453
0.3244

128 out of 128
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[[ 0.997 -0.0021 0.0065 ... 0.0014 O
[-0.0021 1.0001 -0.0014 ... 0.0032 0
[ 0.0065 -0.0014 1.0028 ... -0.0006 0
[ 0.0014 0.0032 -0.0006 ... 1.0063 -0
[ 0.0012 0.0005 0.0074 ... -0.0022 0
[-0.0039 -0.0048 0.0065 ... -0.0005 -0

2 - P-value of Doornik-Hansen test:

3 - P-value of covariance diagonals test:

4 - Gaussian coordinates (w/ st. dev. =

Example output for a correct implementation of Falcon.
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2. Performs a multivariate normality test.
4 We implement the Doornik-Hansen test.
M Using skewness and kurtosis of the multivariate data.
[ Other equivalent tests suffer with poor power.

Example output for a correct implementation of Falcon.

1 - Covariance matrix (128 x 128):
[[ 0.997 .0021 .0065 ... 0.0014
[-0.0021 .0001 .0014 ... 0.0032
[ 0.0065 .0014 .0028 ... -0.0006
[ 0.0014 .0032 .0006 ... 1.0063
[ 0.0012 .0005 .0074 ... -0.0022
[-0.0039 .0048 .0065 ... -0.0005
2 - P-value of Doornik-Hansen test:
3 - P-value of covariance diagonals test:
4 - Gaussian coordinates (w/ st. dev.

.0012
.0005
.0074

.0022

. 993
.0008

sigma)?

.0039]
.00438]
.0065]

.0005]
.0008]
.00811]]

0.2453

0.3244

128 out of 128




2. Performs a multivariate normality test.
4 We implement the Doornik-Hansen test.
M Using skewness and kurtosis of the multivariate data.
[ Other equivalent tests suffer with poor power.

Example output for a correct implementation of Falcon.

1 - Covariance matrix (128 x 128):
[[ 0.997 .0021 .0065 ... 0.0014
[-0.0021 .0001 .0014 ... 0.0032
[ 0.0065 .0014 .0028 ... -0.0006
[ 0.0014 .0032 .0006 ... 1.0063
[ 0.0012 .0005 .0074 ... -0.0022
[-0.0039 .0048 .0065 ... -0.0005
2 - P-value of Doornik-Hansen test:
3 - P-value of covariance diagonals test:
4 - Gaussian coordinates (w/ st. dev.

.0012
.0005
.0074

.0022

. 993
.0008

sigma)?

.0039]
.00438]
.0065]

.0005]
.0008]
.00811]]

0.2453

0.3244

128 out of 128




M Mahalanobis distance visualises
multivariate normality.

M The distance measures std. devs.

of each point from distribution.
[ Empirical vs Expected should
follow a chi-square distribution.

A visual representation of the Mahalanobis distance.
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™M QQ-plot (+R2 value) visualise this.

Q-Q plot for Multivariate Normality of Gaussian Samples

R-Squared = 0.99891052772831478990

340

320 A

300 A

280 A

260 A

Sample Quantiles
N
D
o

N
N
o

200 A

180 A

180 200 220 240 260 280
Theoretical Quantiles

Visual multivariate normality tests.

300

320

340



M Mahalanobis distance visualises
multivariate normality.

M The distance measures std. devs.

of each point from distribution.
[ Empirical vs Expected should
follow a chi-square distribution.

™M QQ-plot (+R2 value) visualise this.

Q-Q plot for Multivariate Normality of Gaussian Samples

R-Squared = 0.99891052772831478990

340

320 A

300 A

280 A

260 A

Sample Quantiles
N
D
o

N
N
o

200 A

180 A

180 200 220 240 260 280
Theoretical Quantiles

Visual multivariate normality tests.

300

320

340



M Mahalanobis distance visualises

340

Q-Q plot for Multivariate Normality of Gaussian Samples

R-Squared = 0.99891052772831478990

multivariate normality. 30
I The distance measures std. devs. ;...
of each point from distribution. %260
4 Empirical vs Expected should 520
follow a chi-square distribution. 00
M QQ-plot (+R2 value) visualise this. wi

Theoretical Quantiles

4 Rejections modelled to observe the geometric decrease.

90
g 80
70+
€
S 60+
=2
5 501
n 401
S
o) 301
0 70
10
0

1 2 3 4 5
Number of Rejections

6 7 8 9



M Mahalanobis distance visualises

340

Q-Q plot for Multivariate Normality of Gaussian Samples

R-Squared = 0.99891052772831478990

multivariate normality. 30
I The distance measures std. devs. ;...
of each point from distribution. %260
4 Empirical vs Expected should 520
follow a chi-square distribution. 00
M QQ-plot (+R2 value) visualise this. wi

Theoretical Quantiles

4 Rejections modelled to observe the geometric decrease.

90
g 80
70+
€
S 60+
=2
5 501
n 401
S
o) 301
0 70
10
0

1 2 3 4 5
Number of Rejections

6 7 8 9



Number of Falcon Signatures Per Second
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" N=512
o N=1024
5250 T
3500 T
1750“ I l I I
Non-Isochronous Our Isochronous Non-Isochronous Our Isochronous

PoC (AVX2) PoC (AVX2)

[ Our sampler in Falcon on one Intel Core i7-6500U CPU @2.5GHz.
4 The performance loss for isochrony is minimal (13% - 18%).
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[ Our sampler in Falcon on one Intel Core i7-6500U CPU @2.5GHz.
4 The performance loss for isochrony is minimal (13% - 18%).
Thanks for Listening
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