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Falcon in a nutshell

ℛ =
ℤq[x]
xn + 1

Compute c such that cA = H(m)

v ← a vector in Λ(B) close to c
s ← c − v

Sign(m,sk)

Generate matrices A, B with coefficients in ℛ
BA = 0
B has small coefficients

pk ← A

sk ← B

KeyGen()

 such that {

s is short
sA = H(m)

Accept iff:

Verify(m,pk,s)

{
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 Compact 
  Fast 
  GPV framework proved secure in the ROM and QROM (Boneh et al. ASIACRYPT 2011) 



Falcon round I

4

Advantages 

 Compact 
  Fast 
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Selected to round II and later round III 
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Side channel attacks targeting Gaussians

‣ Fouque et al EUROCRYPT’2020

Implementation issues

Portability issues: 
- Floating point arithmetics 
- Many subtleties for implementing 

the Gaussian sampler

‣ Espitau et al. SAC’2016

Limitations 

  Non Trivial to understand and implement 
  Floating point arithmetic 
  Side channel resistance not very studied?
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Need for timing protection
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The execution time does not depend on the private key. 

➡ Not necessarily constant !

« Constant time »

+, − , × , / Constant time on integers
Assumption

« Constant time » is a confusing term

Constant time does not mean constant execution time

Better say isochronous ?



  Integer arithmetic for the Gaussian sampling for Falcon 
  Theoretically studied isochrony 

  Test suite : Statistically Acceptable Gaussians (SAGA) 
  Implementations 
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Contributions of this work
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What is not isochronous in Falcon?

Compute c such that cA = H(m)

v ← a vector in Λ(B) close to c
s ← c − v

Sign(m,sk)

ffsampling Gaussian Sampling

Except Gaussian sampling, other operations do not use conditional branching 

over ℤ
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Here we present a simple 
alternative dedicated to Falcon

Isochronous Gaussian sampling

Idea

Construct a distribution that looks somewhat like a Gaussian but is not 
statistically close, and use rejection sampling to correct the discrepancy.
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The technique

0 1

1 Draw an element       from a centered half Gaussian of standard deviation σ0z0

σ0
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The technique

0 1

b = 0

σ0

b = 1

3 Rejection Sampling (Lyubashevsky EC 2012) Accept with probability Paccept ∝
Dσ,μ(z)
Gℤ,σ0

(z)
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Falcon’s Gaussian sampler

Require:  
Ensure:  

1.  Basesampler() 
2.   uniformly 
3.   

4.   

5.  Accept with probability  
Restart to 1. otherwise

μ ∈ [0,1), σ ≤ σ0
z ∼ Dℤ,σ,μ

z0 ←
b ← {0,1}
z ← (2b − 1) ⋅ z0 + b

x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

Algorithm SampleZ( )σ, μ
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Falcon’s Gaussian sampler

Require:  
Ensure:  

1.  Basesampler() 
2.   uniformly 
3.   

4.   

5.  Accept with probability  
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x ← −
(z − μ)2

2σ2
+

z2
0

2σ2
0

exp(x)

σ01.

b = 0

σ0

b = 1

3.

Algorithm SampleZ( )σ, μ

Paccept =
exp (− (z − μ)2

2σ2 )
exp (−

z2
0

2σ2
0 )

b = 0

σ0

b = 1

5.
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Isochronous Falcon Gaussian sampler

Algorithm SampleZ( )σ, μ
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Isochronous Falcon Gaussian sampler

Algorithm SampleZ( )σ, μ

1) Basesampler with a table  
2) Polynomial approximation for exp 
3) Make the number of iterations 

independent from the secret

Isochrony details
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Rényi divergence and security

Security analysis

Using our sampler on a -bit secure signature scheme provides  bits of security. λ λ − 2

Our sampler is isochronous with respect to the standard deviation , the center  and the sampled value . σ μ z1

2

See our paper for the proof
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- One with distribution  
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Suppose that : 
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See our paper for the proof
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Basesampler with a table  

Polynomial approximation for exp 

Make the number of iterations independent from the secret

The isochronous sampler



CDT sampling can be done in constant time if the algorithm reads the 
entire table each time and carry out each comparison

17

1) Sampling with a table

We provide a script that generates  and the  table 
for a given target precision  and 

w CDT
ϵ = 2−80 θ

BaseSampler() close to Dℤ+,σ0

Cumulative Distribution Table ( ) with  elements of  bitsCDT w θ
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1) Sampling with a table

We provide a script that generates  and the  table 
for a given target precision  and 

w CDT
ϵ = 2−80 θ

Require:  
Ensure: , the  table 

1.  Smallest tailcut such that  

2.  Compute the table values with a « clever » rounding 
1. For ,  

2.   

3.  Recompute Rényi divergence and return the new precision,  and 

σ, ϵ ≤ 0,θ
w CDT

w ← Ra (D[w],σ0
, Dℤ+,σ0) ≤ 1 + ϵ

z ≥ 1 CDT(z) ← 2−θ ⌊2θ ⋅ D[w],σ0
(z)⌋

CDT(0) ← 1 − ∑
z≥1

CDT(z)

w CDT

Algorithm Renyification(σ, ϵ, θ)

BaseSampler() close to Dℤ+,σ0
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1) CDT Sampling

R∞ (BaseSampler(), Dℤ+,σ0) ≤ 1 + 2−80

For , our script gaveσ0 = 1.8205

𝙲𝙳𝚃(𝟶) = 𝟸−𝟽𝟸 × 𝟷𝟼𝟿𝟽𝟼𝟾𝟶𝟸𝟺𝟷𝟽𝟺𝟼𝟼𝟺𝟶𝟹𝟶𝟶𝟶𝟹𝟶
𝙲𝙳𝚃(𝟷) = 𝟸−𝟽𝟸 × 𝟷𝟺𝟻𝟿𝟿𝟺𝟹𝟺𝟻𝟼𝟼𝟺𝟸𝟿𝟷𝟸𝟿𝟻𝟿𝟼𝟷𝟼
𝙲𝙳𝚃(𝟸) = 𝟸−𝟽𝟸 × 𝟿𝟸𝟾𝟺𝟾𝟾𝟹𝟻𝟻𝟶𝟷𝟾𝟶𝟷𝟷𝟶𝟻𝟼𝟻𝟷𝟻
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𝙲𝙳𝚃(𝟼) = 𝟸−𝟽𝟸 × 𝟽𝟺𝟹𝟸𝟼𝟶𝟺𝟶𝟺𝟿𝟶𝟸𝟶𝟹𝟽𝟻𝟼𝟽𝟻
𝙲𝙳𝚃(𝟽) = 𝟸−𝟽𝟸 × 𝟷𝟶𝟺𝟻𝟼𝟺𝟷𝟻𝟼𝟿𝟿𝟿𝟸𝟻𝟽𝟺𝟽𝟹𝟶
𝙲𝙳𝚃(𝟾) = 𝟸−𝟽𝟸 × 𝟷𝟶𝟾𝟽𝟾𝟾𝟿𝟿𝟻𝟻𝟺𝟿𝟺𝟸𝟿𝟼𝟾𝟸
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elements
w = 19  bitsθ = 72 ϵ = 80
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3) Number of iterations of the while loop

The number of iterations follows a geometric distribution of average  
2 ⋅ ρσ0

(ℤ+)
ρσ,μ(ℤ)

 Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret??



22

3) Number of iterations of the while loop

The acceptance probability  is scaled by a factor  Paccept
σmin

σ
≤

σmin

σmax
≈ 0.73

The average number of iterations is   
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)

 Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret??

Tweak for Falcon’s sampler



22

3) Number of iterations of the while loop

The acceptance probability  is scaled by a factor  Paccept
σmin

σ
≤

σmin

σmax
≈ 0.73

Indeed, with a Poisson summation (under a Rényi divergence argument), 
 ρσ,μ(ℤ) ≈ σ 2π

So,    
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)
≈

2 ⋅ ρσ0
(ℤ+)

σmin

σ σ 2π
=

2 ⋅ ρσ0
(ℤ+)

σmin 2π

The average number of iterations is   
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)

 Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret??

Tweak for Falcon’s sampler



22

3) Number of iterations of the while loop

The acceptance probability  is scaled by a factor  Paccept
σmin

σ
≤

σmin

σmax
≈ 0.73

Indeed, with a Poisson summation (under a Rényi divergence argument), 
 ρσ,μ(ℤ) ≈ σ 2π

So,    
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)
≈

2 ⋅ ρσ0
(ℤ+)

σmin

σ σ 2π
=

2 ⋅ ρσ0
(ℤ+)

σmin 2π

The average number of iterations is   
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)

 Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret??

✓  Independent from μ
✓  Independent from σ
✓  Independent from z

Tweak for Falcon’s sampler



22

3) Number of iterations of the while loop

The acceptance probability  is scaled by a factor  Paccept
σmin

σ
≤

σmin

σmax
≈ 0.73

Indeed, with a Poisson summation (under a Rényi divergence argument), 
 ρσ,μ(ℤ) ≈ σ 2π

So,    
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)
≈

2 ⋅ ρσ0
(ℤ+)

σmin

σ σ 2π
=

2 ⋅ ρσ0
(ℤ+)

σmin 2π

The average number of iterations is   
2 ⋅ ρσ0

(ℤ+)
σmin

σ ρσ,μ(ℤ)

 Zhao, Steinfeld and Sakzad (2018/1234) 
 Karmakar et al (2019/267) 
‣ Could the number of iterations leak the secret??

✓  Independent from μ
✓  Independent from σ
✓  Independent from z

Tweak for Falcon’s sampler

The whole algorithm  
is constant time
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Our second contribution is SAGA, a statistical test suite.  
We propose this because: 

 Implementation failures are possible, e.g. inaccuracy or 
incorrectness in CDT table values. 

 Implementation failures can also be found if the base 
Gaussian sampler is validated, but the outputs are not.  

 Randomness / entropy levels not being sufficient. 

 SAGA only works on outputs, thus it is completely 
agnostic to the sampling method or scheme used.

Statistically Acceptable Gaussians



Our second contribution is SAGA, a statistical test suite.  
More specifically SAGA can validate: 

 Univariate Gaussian samples for base Gaussian samplers 
useful for samplers in FrodoKEM, DLP-IBE, FHE, etc. 

 Multivariate Gaussian samples for outputs of schemes 
useful for Falcon, DLP-IBE, LATTE, etc. 

 Supplementary, graphical, and sanity check tests for 
things like rejection rates, uni-, and multi-variate normality. 

Statistically Acceptable Gaussians



 First we compare the Expected vs Empirical observations 
for mean, variance, skewness, and kurtosis. 

 Secondly we perform a chi-squared normality test. 

SAGA Tests on Univariate Samples

An example output for testing univariate samples from a (base) Gaussian sampler.
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1. Can we find errors if the base sampler is designed well? 
 Incorrect tree designs in Falcon will affect its covariance. 
 We thus posit that covariance in (block-)sub-diagonals: 

 grow in O(√n) for correct implementations and 
 grow in O(n) for incorrect implementations. 

 Test 3 uses this (p-value) in a chi-squared test. 

SAGA Tests on Multivariate Samples

Example output for a correct implementation of Falcon.
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1. Can we find errors if the base sampler is designed well? 
 Incorrect tree designs in Falcon will affect its covariance. 
 We thus posit that covariance in (block-)sub-diagonals: 

 grow in O(√n) for correct implementations and 
 grow in O(n) for incorrect implementations. 

 Test 3 uses this (p-value) in a chi-squared test. 

SAGA Tests on Multivariate Samples

A properly functioning Falcon implementation     VS    an implementation with a mistake when constructing the Falcon tree.



2. Performs a multivariate normality test. 
 We implement the Doornik-Hansen test. 
 Using skewness and kurtosis of the multivariate data. 
 Other equivalent tests suffer with poor power. 

SAGA Tests on Multivariate Samples

Example output for a correct implementation of Falcon.
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 Mahalanobis distance visualises 
multivariate normality. 
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follow a chi-square distribution. 
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A visual representation of the Mahalanobis distance.
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Implementations

Number of Falcon Signatures Per Second

1750

3500

5250

7000

Non-Isochronous Our Isochronous 
PoC

Non-Isochronous 
(AVX2) 

Our Isochronous 
PoC (AVX2) 

N = 512
N = 1024

 Our sampler in Falcon on one Intel Core i7-6500U CPU @2.5GHz. 
 The performance loss for isochrony is minimal (13% - 18%). 
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