

Time-Independent Discrete Gaussian Sampling For Post-Quantum Cryptography

Ayesha Khalid, James Howe, Ciara Rafferty, and Máire O'Neill,

Centre for Secure Information Technologies (CSIT), Queen's University Belfast, UK.

@CSIT_QUB @SAFEcrypto

jhowe02@qub.ac.uk

Aims and Objectives

Post-Quantum Cryptography

This research aims to provide:

- Area/speed efficient discrete Gaussian sampling hardware designs
- The hardware designs are scalable with results given for both **Encryption and Signature parameters.**
- Sampler designs run in constant-time and this are resilient to sidechannel (SCA) timing analysis attacks.
- **Practical hardware cumulative distribution table (CDT) designs for** both lattice-based Encryption and Signatures.

Cumulative Distribution Table (CDT) Sampling

The use of discrete Gaussian sampling based on large pre-computed tables was first proposed by Peikert [2010]. The procedure works as:

- **1. The Cumulative Distribution Table (CDT) sampler requires a** precomputed table of discrete Gaussian cumulative distribution function (CDF) values, with λ -bits of precision.
- 2. A lookup table stores the N samples ($0 = S[0] < S[1] < \cdots < S[N-3] = 1$).
- 3. CDF values S[·] are then accessed via a random sample $r \leftarrow [0,1)$.
- 4. The desired sample x is found satisfying interval $S[x] \le r < S[x+1]$, which occurs with probability $\rho[x] = S[x+1] - S[x]$.
- 5. Initial table values (close to x = 0) are more probable than values near the end.

Conventional non-quantum cryptographic algorithms that will remain secure even after practical quantum computing is a reality.

Advantages of lattice-based crypto:

- Underlying operations can be implemented efficiently.
- Most promising as allows for other constructions/applications beyond encryption/signatures, e.g. IBE, ABE, homomorphic encryption etc.

TIME-INDEPENDENT CDT SAMPLING FOR POST-QUANTUM CRYPTOGRAPHY

CDT results.

$\sigma_{\rm BLISS} =$	et al. [19]	00LA25-5	120)20/1121/2))	1	12)	\sim 7.5	~ 21	11.2	0.00	
215	This work	6SLX25-3	64	577/64/179	0	130	8	64	16.3	0.09	\checkmark
				130/48/44	2	126	8	64	15.8	0.36	\checkmark

Results significantly outperform previous results for use in Signatures ($\sigma_{\text{BLISS}} = 215$), and competes for use in Encryption ($\sigma_{LP} = 3.33$), with added quality of time-independence.

