

Lattice-based Encryption Over Standard Lattices In Hardware

James Howe, Ciara Moore, & Máire O'Neill, Centre of Secure Information Technologies (CSIT), Queen's University Belfast, UK.

Francesco Regazzoni, Advanced Learning and Research Institute, Università della Svizzera Italiana, Switzerland.

Tim Güneysu, Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany.

Kevin Beeden, Thales UK, Research and Technology, UK.

Quantum Safe Cryptography

@JamesHowe1729

Aims and Objectives

This project aims to provide:

- The first hardware architecture for standard lattice-based crypto.
- A benchmark for future standard lattice-based cryptography.
- Area-optimised hardware architectures for encryption/decryption.
- Highly optimised discrete Gaussian sampler which is the first to investigate the hardware impact of $\lambda \rightarrow \frac{1}{2}\lambda$ precision reduction.

Conventional non-quantum cryptographic algorithms that will remain secure even after practical quantum computing is a reality. Advantages of lattice-based crypto:

- Underlying operations can be implemented efficiently.
- Most promising as allows for other constructions/applications beyond encryption/signatures, e.g. IBE, ABE, homomorphic encryption etc.

RING-LWE (VS STANDARD) VULNERABILITIES

Due to the longevity of satellites and associated infrastructure, any public key solution needs to be secure for a long period of time. It is an ideal case study for the use of quantum safe cryptographic solutions

STANDARD LATTICE-BASED LWE ENCRYPTION HARDWARE ARCHITECTURE

as has as the recent record computation for the same factice on the same computer matchate.	time (s)
Standard-LWE	Ring-LWE
Large keys required (size N^2).	Reduced key sizes can be used - due to ideal lattice assumption (size N).
Matrix-vector multiplications required.	Ideal representation reduces computations to polynomial multiplication, allowing use of fast NTT multiplication.
Security is based on the LWE problem.	Security is based on the LWE problem with an additional security assumption to use an ideal lattice structure.

Hardware results on a Spartan 6 – LX45 FPGA, compared with other ring-LWE hardware results. Despite there being a 128x increase in key sizes, as well as the number of extra multiplications, most of the results compare well with, or even better, other ring-LWE schemes.

Operation & Algorithm	Device	LUT/FF/SLICE	BRAM/DSP	MHz	Cycles	Ops/s
LWE Encrypt $(\lambda = 128)$	S6LX45	6152/4804/1866	73/1	125	98304	1272
LWE Encrypt $(\lambda = 64)$	S6LX45	6078/4676/1811	73/1	125	98304	1272
LWE Decrypt	S6LX45	63/58/32	13/1	144	32768	4395
RLWE Encrypt [14]	V6LX240T	298016 / - /143396	—/—		—	_
RLWE Decrypt [14]	V6LX240T	124158 / - /65174	_/_	—	—	—
RLWE Encrypt [26]	S6LX16	4121/3513/-	14/1	160	6861	23321
RLWE Decrypt [26]	S6LX16	4121/3513/-	14/1	160	4404	36331
RLWE Encrypt [26]	V6LX75T	4549/3624/1506	12/1	262	6861	38187
RLWE Decrypt [26]	V6LX75T	4549/3624/1506	12/1	262	4404	59492
RLWE Encrypt [27]	S6LX9	282/238/95	2/1	144	136212	1057
RLWE Decrypt [27]	S6LX9	94/87/32	1/1	189	66338	2849
RLWE Encrypt [32]	V6LX75T	1349/860/-	2/1	313	6300	49751
RLWE Decrypt [32]	V6LX75T	1349/860/-	2/1	313	2800	109890
ECC-P224 Encrypt	XC4VFX12	1825/1892/-	11/26	487	178000	2740
ECC-P256 Encrypt	XC5VLX85T	18097/-/5644	—/—	156	-	81300

