
Benchmarking and Analysing NIST PQC Lattice-Based
Signature Scheme Standards on ARM Cortex M7

James Howe
Senior Research Scientist

Africacrypt 2023

© SB Technology, Inc. SandboxAQ Proprietary Material

01 Introduction and Motivation

02 Benchmark and Profile Results

03 Constant-Time Issues

CONTENTS

INTRODUCTION AND
MOTIVATION

01

© SB Technology, Inc. SandboxAQ Proprietary Material

What are the PQC standards we have?

origin

b1
b2

shortest vector

CRYSTALS-Kyber is the only KEM and
CRYSTALS-Dilithium is the primary signature.

“The security of Kyber has been thoroughly
analyzed [...] based on a strong framework of
results in lattice-based cryptography. Kyber

has excellent performance overall in software,
hardware and many hybrid settings.”

“Dilithium is a signature scheme with high
efficiency, relatively simple implementation, a

strong theoretical security basis, and an
encouraging cryptanalytic history.”

“
”

© SB Technology, Inc. SandboxAQ Proprietary Material

What are the PQC standards we have?

Falcon, also from
lattices, different

performance profile.

More complex
implementation,
emulates or uses

FPU.

Offers significantly
smaller signature

sizes and
fast verification.

Falcon was chosen for standardization because NIST has confidence in
its security (under the assumption that it is correctly implemented) and
because its small bandwidth may be necessary in certain applications.

We also have two other PQ signatures

“

© SB Technology, Inc. SandboxAQ Proprietary Material

The Premise

“NIST understands that some applications
will not work as they are currently designed
if the signature and the data being signed
cannot fit in a single internet packet.”

“For this reason, NIST decided to standardize
FALCON as well. Given FALCON’s overall
better performance when signature
generation does not need to be performed
on constrained devices, many applications
may prefer to use FALCON over Dilithium,
even in cases in which Dilithium’s signature
size would not be a barrier to
implementation.”

”
Signature benchmarks of Dilithium and Falcon (tree) on
ARM Cortex M4, using the template from [Fig. 7, AAC+22].

© SB Technology, Inc. SandboxAQ Proprietary Material

Current State on ARM Cortex M4

Thus we get performance profiles like this →

We wanted to challenge the belief that Falcon
signing is much slower than Dilithium’s.

Important decision in, e.g., RISC-V CPU and SoC
implementations.

Without double precision,
Falcon emulates floats.

Can a full FPU implementations be constant time?
Signature benchmarks of Dilithium and Falcon (tree) on
ARM Cortex M4, using the template from [Fig. 7, AAC+22].

© SB Technology, Inc. SandboxAQ Proprietary Material

What’s the big deal?
Falcon’s Constant-time and Correctness

Emulated floating-point
implementation can be done

Only using integer operations
with uint32_t and uint64_t types

This is constant-time, provided that the underlying platform offers
constant-time opcodes for:

• Multiplication of two 32-bit unsigned integers into a 64-bit result.

• Left-shift or right-shift of a 32-bit unsigned integer by a potentially secret
shift count in the 0...31 range.

01 02

03

© SB Technology, Inc. SandboxAQ Proprietary Material

Why the ARM Cortex M7?

From: ARM® Cortex®-M for Beginners

NIST selected Cortex M4 as benchmark MCU;
and the Cortex M7 is a very similar core

Both have ARMv7-M architecture

Cortex M7 has all ISA features available in the Cortex M4

M7 has 6-stage pipeline (vs 3) and better memory features
and branch predicting

M7 has 64-bit FPU, M4 has 32-bit

Falcon requires 53-bit floating-point precision

Using floating-points is rare in cryptography → side channels?

BENCHMARKING
AND PROFILING

02

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking Premise

Benchmark
Dilithium and

Falcon on ARM
Cortex M7.

Taken from open
source repos

i.e., pqm4.

Benchmarks
averaged

over 1000 runs.

Presentation
focus on clock

cycles.

Mainly use
STM32F767ZI
NUCLEO-144

board.

Use GNU ARM
embedded

toolchain: v10.2.1

using -O2 -mcpu=cortex-m7 -march=-march=armv7e-m+fpv5+fp.dp

© SB Technology, Inc. SandboxAQ Proprietary Material

Dilithium Benchmarking (M4 vs M7)

Overall, the performance of
Dilithium wasn’t interesting.

Improvements range
between 1.09-1.19x

Essentially accounts for the
slightly better MCU: Cortex M7
vs the Cortex M4.

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking Results (FPU vs EMU on M7)

Falcon expectedly sees a
drastic speedup

Improvements range
between >6-8x overall

Key generation is least
impacted, >1.5x speedup
overall.

Signing times show most
improvements:
• Sign dynamic >6x speedup,

close to Dilithium perf.
• Sign tree >4.5x speedup,

comfortably faster than
Dilithium

Verify not impacted, doesn’t require floats.

© SB Technology, Inc. SandboxAQ Proprietary Material

Profiling Falcon-512 (FPU vs EMU)

Performance improvements inside Falcon:

For key generation:
• NTRUSolve(ᐧ) improves by 1.7x, 69m → 40m cycles.
• iFFT/FFT multiplication 16x better, 10m → 0.5m cycles.
• FFT polynomial inversion 13x better, 1.5m → 0.1m cycles.

Expand private key improved 12x.
Going from 11m to <1m cycles.

Verify times were unchanged.

© SB Technology, Inc. SandboxAQ Proprietary Material

Profiling Falcon-512 (FPU vs EMU)

Performance improvements inside Falcon:

For (either) signing modes:
• Convert basis to FFT 16x better, 4m → 0.2m cycles.
• FFT mult. for lattice basis 14x better, 1.3m → 0.01m cycles.
• Fast Fourier sampling 5x better, 16m → 3m cycles.
• Recompute basis matrix 15x better, 4m → 0.2m cycles.
• Finding lattice point 8x better, 3m → 0.3m cycles.

Almost all functions involve Fast Fourier.

© SB Technology, Inc. SandboxAQ Proprietary Material

Benchmarking (Dilithium vs Falcon)

Now we see a
much different
performance
profile!

Falcon-512 &
Falcon-1024
signature
generation now
slightly faster
than Dilithium2
& Dilithium5!Falcon and Dilithium on the

ARM Cortex M4.
Falcon and Dilithium on the

ARM Cortex M7.

CONSTANT OR
ISOCHRONOUS RUNTIME

03

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
Floating-point arithmetic is rare in cryptography!
Thus we thought it was worth looking at…

This example is for double precision multiplication, i.e.,
vmul.f64, this is repeated for each instruction.
We tested 4 STM32 development boards.

We used inline assembly to
• Minimize the unwanted optimizations from the compiler

/ clobbered registers where necessary.
• This minimizes the effect of surrounding instructions on

the operations of interest.
• Which occurred when we tried using C.
• Ensures that all execution is from cache.

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
• Assembly code uses two random inputs for each

function.

• We found timing issues in all double precision FPU
instructions across all 4 STM32 boards.

• In addition (vadd.f64) runtimes had
16 clocks on avg, standard deviation of 4.1.

• Random values in same range (same exponents)
had constant runtime at 10 clock cycles.

• From two different exponent ranges we observed
constant runtime at 19 clock cycles.

• If one value is zero, instruction was ‘skipped’.

© SB Technology, Inc. SandboxAQ Proprietary Material

Constant-Time Validation
Also tested the ARM Cortex A53 as a
previous paper uses Raspberry Pi 3.

Issue found when casting from types
double to int64_t, op rounds towards zero.

No native instruction to do this on ARMv7.

This can be non-constant time.

In LLVM, it isn’t, and leaks the sign.

We reported this to the Falcon team and proposed the
following fix shown on the right.

© SB Technology, Inc. SandboxAQ Proprietary Material

Takeaways

Falcon is super fast on the ARM Cortex M7.

Beware of timing issues, for all platforms.

Users should consider this thoroughly for all use cases.

For example
Cloudflare currently recommend using
Falcon in offline situations.

0
1

0
2

0
3

THANK

Paper:
https://eprint.iacr.org/2022/405

GitHub:
https://github.com/jameshoweee/falcon-fpu

YOU

https://eprint.iacr.org/2022/405
https://github.com/jameshoweee/falcon-fpu

